4.8 Article

Virus pH-Dependent Interactions with Cationically Modified Cellulose and Their Application in Water Filtration

期刊

SMALL
卷 17, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202100307

关键词

cryo-TEM; nanocellulose; pH-responsive materials; SAXS; virus adsorption

资金

  1. EU-H2020 research and innovation program [654360]

向作者/读者索取更多资源

This study demonstrates pH-responsive interactions of viruses with cationic-modified nanocellulose, creating a filter material that adsorbs nanoscale viruses and can be regenerated by changing the solution's pH. The virus removal capacity of the cationic cellulose-based aerogel filter is 99.9% for MS2 and 93.6% for Qbeta at pH = 7.0.
Norovirus and Rotavirus are among the pathogens causing a large number of disease outbreaks due to contaminated water. These viruses are nanoscale particles that are difficult to remove by common filtration approaches which are based on physical size exclusion, and require adsorption-based filtration methods. This study reports the pH-responsive interactions of viruses with cationic-modified nanocellulose and demonstrates a filter material that adsorbs nanoscale viruses and can be regenerated by changing the solution's pH. The bacteria viruses Qbeta and MS2, with diameters below 30 nm but different surface properties, are used to evaluate the pH-dependency of the interactions and the filtration process. Small angle X-ray scattering, cryogenic transmission electron microscopy, and zeta-potential measurements are used to study the interactions and analyze changes in their nanostructure and surface properties of the virus upon adsorption. The virus removal capacity of the cationic cellulose-based aerogel filter is 99.9% for MS2 and 93.6% for Qbeta, at pH = 7.0; and desorption of mostly intact viruses occurs at pH = 3.0. The results contribute to the fundamental understanding of pH-triggered virus-nanocellulose self-assembly and can guide the design of sustainable and environmentally friendly adsorption-based virus filter materials as well as phage and virus-based materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据