4.8 Review

Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges

期刊

SMALL
卷 17, 期 37, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202100129

关键词

electrocatalysis; oxygen evolution; transition metal

资金

  1. National Natural Science Foundation of China [51825201]
  2. National Key Research and Development Program of China [2019YFB1505001]

向作者/读者索取更多资源

Oxygen evolution reaction (OER) is crucial in electrochemical applications like water splitting and rechargeable metal-air batteries, but its slow kinetics presents a performance bottleneck. Therefore, rational design of OER electrocatalysts based on understanding mechanisms and structure-activity relationship is essential. Study of reaction pathways, intermediates, and descriptors can lead to more efficient design of transition metal-based OER electrocatalysts.
Oxygen evolution reaction (OER) is an important half-reaction involved in many electrochemical applications, such as water splitting and rechargeable metal-air batteries. However, the sluggish kinetics of its four-electron transfer process becomes a bottleneck to the performance enhancement. Thus, rational design of electrocatalysts for OER based on thorough understanding of mechanisms and structure-activity relationship is of vital significance. This review begins with the introduction of OER mechanisms which include conventional adsorbate evolution mechanism and lattice-oxygen-mediated mechanism. The reaction pathways and related intermediates are discussed in detail, and several descriptors which greatly assist in catalyst screen and optimization are summarized. Some important parameters suggested as measurement criteria for OER are also mentioned and discussed. Then, recent developments and breakthroughs in experimental achievements on transition metal-based OER electrocatalysts are reviewed to reveal the novel design principles. Finally, some perspectives and future directions are proposed for further catalytic performance enhancement and deeper understanding of catalyst design. It is believed that iterative improvements based on the understanding of mechanisms and fundamental design principles are essential to realize the applications of efficient transition metal-based OER electrocatalysts for electrochemical energy storage and conversion technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据