4.6 Article

The Accuracy and Precision of Gait Spatio-Temporal Parameters Extracted from an Instrumented Sock during Treadmill and Overground Walking in Healthy Subjects and Patients with a Foot Impairment Secondary to Psoriatic Arthritis

期刊

SENSORS
卷 21, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/s21186179

关键词

wearable systems; IMUs; gait parameters; free-living measures

资金

  1. CANADIAN MSK REHAB RESEARCH NETWORK [CFI-148081]

向作者/读者索取更多资源

This study assessed the accuracy and precision of a system combining IMU-instrumented socks and a validated algorithm for estimating gait spatio-temporal parameters. The results showed good agreement between the IMU-instrumented sock and motion capture system in estimating gait parameters during treadmill walking, with the sock performing better in estimating gait speed and stride length. The IMU-instrumented sock showed good to excellent precision for overground walking and fast treadmill walking, but moderate-to-good precision for slow and normal treadmill walking.
The objectives of this study were to assess the accuracy and precision of a system combining an IMU-instrumented sock and a validated algorithm for the estimation of the spatio-temporal parameters of gait. A total of 25 healthy participants (HP) and 21 patients with foot impairments secondary to psoriatic arthritis (PsA) performed treadmill walking at three different speeds and overground walking at a comfortable speed. HP performed the assessment over two sessions. The proposed system's estimations of cadence (CAD), gait cycle duration (GCD), gait speed (GS), and stride length (SL) obtained for treadmill walking were validated versus those estimated with a motion capture system. The system was also compared with a well-established multi-IMU-based system for treadmill and overground walking. The results showed a good agreement between the motion capture system and the IMU-instrumented sock in estimating the spatio-temporal parameters during the treadmill walking at normal and fast speeds for both HP and PsA participants. The accuracy of GS and SL obtained from the IMU-instrumented sock was better compared to the established multi-IMU-based system in both groups. The precision (inter-session reliability) of the gait parameter estimations obtained from the IMU-instrumented sock was good to excellent for overground walking and treadmill walking at fast speeds, but moderate-to-good for slow and normal treadmill walking. The proposed IMU-instrumented sock offers a novel form factor addressing the wearability issues of IMUs and could potentially be used to measure spatio-temporal parameters under clinical conditions and free-living conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据