4.6 Article

Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network

期刊

SENSORS
卷 21, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/s21186274

关键词

error-related potentials; brain-computer interface; calibration; neurorehabilitation; stroke; classifier interpretation

向作者/读者索取更多资源

This study aimed to classify Error-related potentials (ErrPs) in individuals with stroke and compare different classification methods and calibration schemes. The results showed that using waveform features can improve classifier performance and interpretability, but specific calibration is needed for optimal decoding of ErrPs.
Error-related potentials (ErrPs) have been proposed as a means for improving brain-computer interface (BCI) performance by either correcting an incorrect action performed by the BCI or label data for continuous adaptation of the BCI to improve the performance. The latter approach could be relevant within stroke rehabilitation where BCI calibration time could be minimized by using a generalized classifier that is continuously being individualized throughout the rehabilitation session. This may be achieved if data are correctly labelled. Therefore, the aims of this study were: (1) classify single-trial ErrPs produced by individuals with stroke, (2) investigate test-retest reliability, and (3) compare different classifier calibration schemes with different classification methods (artificial neural network, ANN, and linear discriminant analysis, LDA) with waveform features as input for meaningful physiological interpretability. Twenty-five individuals with stroke operated a sham BCI on two separate days where they attempted to perform a movement after which they received feedback (error/correct) while continuous EEG was recorded. The EEG was divided into epochs: ErrPs and NonErrPs. The epochs were classified with a multi-layer perceptron ANN based on temporal features or the entire epoch. Additionally, the features were classified with shrinkage LDA. The features were waveforms of the ErrPs and NonErrPs from the sensorimotor cortex to improve the explainability and interpretation of the output of the classifiers. Three calibration schemes were tested: within-day, between-day, and across-participant. Using within-day calibration, 90% of the data were correctly classified with the entire epoch as input to the ANN; it decreased to 86% and 69% when using temporal features as input to ANN and LDA, respectively. There was poor test-retest reliability between the two days, and the other calibration schemes led to accuracies in the range of 63-72% with LDA performing the best. There was no association between the individuals' impairment level and classification accuracies. The results show that ErrPs can be classified in individuals with stroke, but that user- and session-specific calibration is needed for optimal ErrP decoding with this approach. The use of ErrP/NonErrP waveform features makes it possible to have a physiological meaningful interpretation of the output of the classifiers. The results may have implications for labelling data continuously in BCIs for stroke rehabilitation and thus potentially improve the BCI performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据