4.7 Article

Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 806, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.150379

关键词

Layered double hydroxides; p-arsanilic acid; Inorganic arsenic; Surface-bound radical; DFT calculation; Degradation pathway

资金

  1. National Natural Science Foundation of China [51978618, 51508509]
  2. Natural Science Foundation of Zhejiang Province of China [LY21E080018, LY18E080036]

向作者/读者索取更多资源

The study successfully achieved the degradation of organoarsenic and immobilization of inorganic arsenic by preparing cobalt-manganese-iron layered double hydroxide and oxide, with a removal efficiency of 100% for the target pollutant p-ASA. The catalytic performance and stability of CoMnFe-LDH/PMS system show great promise for the efficient control of organoarsenic pollutants, providing new insights and technical support for the field.
Organoarsenic contaminants existing in water body threat human health and ecological environment due to insufficient bifunctional treatment technologies for organoarsenic degradation and inorganic arsenic immobilization. In order to safely and efficiently treat organoarsenic contaminants discharged into the aquatic environment, Co-Mn-Fe layered double hydroxide (CoMnFe-LDH) and Co-Mn-Fe layered double oxide (CoMnFe-LDO) were fabricated and employed as peroxymonosulfate (PMS) activator for organoarsenic degradation and inorganic arsenic immobilization, and p-arsanilic acid (p-ASA) was selected as target pollutant. Results demonstrated that the satisfactory removal of p-ASA (100.0%) in both CoMnFe-LDH/PMS and CoMnFe-LDO/PMS systems was obtained within 30 min, and substantial inorganic arsenic adsorption could be achieved (below 0.5 mg/L) in two systems with converting major inorganic arsenic species to arsenate. As XPS, ESR and quenching experiment revealed, the existence and generation of surface-bound radicals in two systems were identified. Based on density functional theory calculation and XPS analysis, the catalytic mechanism of CoMnFe-LDO/PMS system that PMS could be activated via direct electron transfer from adsorbed p-ASA was clarified, which differed from PMS activation via coupling with surface hydroxyl groups in CoMnFe-LDH/PMS system. Catalytic performance assessment under various critical operation parameters indicated that CoMnFe-LDH presented more stable ability of p-ASA removal in a wide pH range and complex aquatic environment. The recycle experiment demonstrated the excellent stability and reusability of CoMnFe-LDH(LDO). Besides, seven degradation products of p-ASA in CoMnFe-LDH/PMS system including phenolic compounds, azophenylarsonic acid, nitrobenzene and benzoquinne were identified by UV-Vis spectra and LC-TOF-MS analysis, and the corresponding degradation pathway was proposed. In summary, compared to CoMnFe-LDO/PMS, CoMnFe-LDH/PMS holds great promise for the development of an oxidation-adsorption process for efficient control of organoarsenic pollutant. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据