4.7 Review

Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 773, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145692

关键词

Persistent organic pollutant; Steelmaking industry; Persistent organic pollutant formation; Emission level; Emission limit

资金

  1. National Natural Science Foundation of China [21936007, 21906165, 91843301, 21777172]
  2. CAS Interdisciplinary Innovation Team [JCTD-2019-03]

向作者/读者索取更多资源

This review summarizes the emissions levels, characteristics, and formation mechanisms of UP-POPs in the steelmaking industry, and discusses the factors influencing UP-POP formation, emission limits, and reduction techniques worldwide in the steel industry.
The steelmaking industry is an important source of unintentionally produced persistent organic pollutants (UP-POPs). This review summarizes the emission levels, characteristics, and formation mechanisms of UP-POPs, including halogenated dioxins, polychlorinated biphenyls, polychlorinated naphthalenes, and penta- and hexa-chlorobenzenes in the steelmaking industry to improve our understanding of the emissions of UP-POPs from the steelmaking industry. The factors influencing UP-POP formation during the iron ore sintering (IOS) process are also reviewed. The raw materials and temperature during the steelmaking process are important factors influencing UP-POP generation. Raw materials containing plastics, paints, cutting oil, rubber, and iron from electronic waste recycling can contribute to high emissions of UP-POPs during steelmaking processes. Electrostatic precipitator dust contains chlorine, carbon, and metals, which are usually recycled as a component of the raw material, and could also promote dioxin formation and emissions from IOS. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are easily formed in high concentrations at temperatures in the range of 200 degrees C - 650 degrees C. This review also provides a comprehensive summary of the UP-POP emission limits in the steel industry worldwide and the best available techniques and environmental practices for UP-POP emission reduction. The information in this review will be useful for the reduction of UP-POPs in the steelmaking process. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据