4.7 Article

Comparative investigation on removal characteristics of tetracycline from water by modified wood membranes with different channel walls

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 775, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145617

关键词

Wood membrane; Tetracycline; Wood structure; Adsorption; Water treatment

资金

  1. National Key Research and Development Program of China [2019YFC1906503]
  2. National Natural Science Foundation of China [51108444]
  3. Key Research and Development Plan of the Ministry of Science and Technology [2019YFD1100104]

向作者/读者索取更多资源

The study found that modified basswood membranes showed better adsorption of tetracycline due to more carboxylic groups on the channel walls and the formation of particles.
The alkali-innocuous citric acid (CA) modified wood membranes (WMs) have been developed as facile, economical, and effective adsorption membranes to remove tetracycline (TC) from water. However, TC removal by modified WMs with different types of wood channel walls have rarely been compared. Therefore, in this study, modified WMs were prepared with pinewood (PW) and basswood (BW). The PW and BW WMs before and after modification were characterized by SEM, EDX, XRD, ATR-FTIR, TGA, contact angle and zeta potential. After modification, cellulose I in cellulose crystal structures of raw WM transformed to cellulose II and the contents of carboxylic groups for PW and BW were enhanced to make the hydrophilicity of WM surface increased. Compared with modified PW WMs, particles formed on the channel walls of modified BW WMs containing vessel pits to make more carboxylic groups introduced. The TC adsorption breakthrough curves showed that the 6 wt% alkali-CA modified BW had an effective filtration volume of 1968 bed volume (BV) compared with the 4 wt% alkali-CA modified PW of 1205 BV as the influent TC and breakthrough point were chosen at 2 and 0.5 mg/L, respectively. At low pH, TC complex with WM surfaces through Lewis acid-base interaction. Zwitterionic TC was shown to favor adsorption onto WM via hydrogen bonding at pH of around 5. With further increasing pH, TC adsorption efficiency decreased due to the electrostatic repulsion. The costs of modified BW and PW are about 0.0054-0.0126 US$/m(3) and 0.01-0.024 US$/m(3) for a low TC concentration effluent (0-0.5 mg/L), respectively. This work shed a new sight on how to develop economical and effective adsorption WMs for contaminants removal from water. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据