4.7 Article

New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 780, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146609

关键词

Agriculture; Bulk density; Pedotransfer functions; PTFs; Soil carbon; Soil texture

资金

  1. Lake Como Advanced School
  2. Italian Society of Agronomy, University of Milan
  3. University of Pavia
  4. Natural Resources Institute Finland
  5. Italian Society for Agronomy
  6. [774234]

向作者/读者索取更多资源

In this study, a suitable pedotransfer function (PTF) for bulk density (BD) estimation of arable land in the Mediterranean Basin was developed using climatic, topographic, soil texture, and organic carbon data. The newly developed Artificial Neural Network (ANN) PTF outperformed other traditional methods for estimating BD, showing better performance in training, validation, and transferability to external datasets.
For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but measured data are usually not available especially when dealing with legacy soil data. It is possible to estimate BD by applying pedotransfer function (PTF). We applied different estimation methods with the aim to define a suitable PTF for BD of arable land for the Mediterranean Basin, which has peculiar climate features that may influence the soil carbon sequestration. To improve the existing BD estimation methods, we used a set of public climatic and topographic data along with the soil texture and organic carbon data. The present work consisted of the following steps: i) development of three PTFs models separately for top (0-0.4 m) and subsoil (0.4-1.2 m), ii) a 10-fold cross-validation, iii) model transferability using an external dataset derived from published data. The development of the new PTFs was based on the training dataset consisting of World Soil Information Service (WoSIS) soil profile data, climatic data from WorldClim at 1 km spatial resolution and Shuttle Radar Topography Mission (SRTM) digital elevation model at 30 m spatial resolution. The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple Linear Regression backward stepwise (MLR-BS), and Artificial Neural Network (ANN). The predictions of the newly developed PTFs were compared with the BD calculated using the PTF proposed by Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset. For the topsoil training dataset (N = 129), MLR-S, MLR-BS and ANN had a R-2 0.35, 0.58 and 0.86, respectively. For the model transferability, the three PTFs applied to the external topsoil dataset (N = 59), achieved R-2 values of 0.06, 0.03 and 0.41. For the subsoil training dataset (N = 180), MLR-S, MLR-BS and ANN the R-2 values were 0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset (N = 29), the R-2 values were 0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, resulted in an intermediate performance compared to calibration and validation with the external dataset. The new ANN PTF outperformed MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. Further improvements may be achieved by additionally considering the time of sampling, agricultural soil management and cultivation practices in predictive models. (C) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据