4.7 Article

Mechanism and enhancement of Cr(VI) contaminated groundwater remediation by molasses

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 780, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146580

关键词

Hexavalent chromium; Groundwater; Molasses; Biological reduction; Chemical reduction

向作者/读者索取更多资源

The study found that using molasses to remediate Cr(VI)-contaminated groundwater is cost-effective and can effectively avoid secondary contamination. The addition of ascorbic acid can promote the rate of bioremediation, while NaHCO3 can buffer pH changes and promote the precipitation of Cr(III).
The remediation of Cr(VI)-contaminated groundwater with molasses has many advantages compared with traditional in-situ chemical methods, including high cost-effectiveness and negligible secondary contamination. Hence, the reaction conditions and mechanisms of molasses were investigated in this study. The results showed that Cr(VI) was chemically reduced by molasses at acidic pH (3.0), wherein the dominant active components were the hydroxyl and carbonyl groups of molasses. At neutral pH (7.0), molasses mainly acted as an electron donor for direct or indirect reduction of Cr(VI) by microorganisms. The main functional microorganisms were Bacillus and Clostridium Sensu Stricto. Compared with chemical reduction, bio-reduction could completely reduce higher concentrations of Cr(VI) when molasses was added at a concentration of 3 g/L. Ascorbic acid was added to promote the removal rate of bioremediation. Owing to the antioxidant properties of ascorbic acid, the reaction rate increased by 9.3% and 37.5% when 0.05 g/L of ascorbic acid was added to the 50 and 100 mg/L Cr(VI) bioremediation systems, respectively. Due to the decrease in pH during bioremediation, NaHCO3 was added to buffer the pH changes and promote Cr(III) precipitation. Compared with the addition of NaHCO3 and molasses simultaneously, separate additions were more effective for precipitation. Furthermore, X-ray absorption near edge structure analysis revealed that after chemical reduction and biological reduction, Cr was attached to the solid medium in the form of Cr(III). (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据