4.7 Article

Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 771, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144751

关键词

Agricultural soil; Antibiotic; Bacterial community; Biochar; Biodegradation

资金

  1. National Key R&D Program of China [2017YFC0404504]
  2. Key R&D Program of Shanxi Province of China [201703D211014]

向作者/读者索取更多资源

This study found that the type of biochar had a greater impact on the biodegradation of antibiotics in soil, with Steroidobacter having significant positive correlations with the biodegradation of sulfonamides.
This study investigated the effects of applying different biochars to soil on shifts in the bacterial community, the biodegradation of antibiotics, and their relationships. In total, nine biochars were applied to agricultural soil contaminated with 16 antibiotics. Clustering analysis showed that the responses of bacteria at the genus level to biochars were highly dependent on the biochar feedstock rather than the pyrolysis temperature. Among the antibiotics tested in the study, the biodegradation percentage was lower for tetracyclines (TCs, 6-14%) than sulfonamides (SAs, 8-26%) and quinolones (QLs, 8-24%). For specific individual antibiotics from the same class with similar structures, the high adsorption affinity of soil particles for antibiotics due to hydrophobic interactions (logK(ow)) and electrostatic interactions (pK(a)) resulted in low biodegradation percentages for antibiotics in the soil. The biodegradation of TCs was affected more by the biochar type (effect size: -10% to 42%) than those of QLs (-26% to 14%) and SAs (-24% to 22%). According to the relationships determined between the bacterial taxonomic composition and biodegradation of antibiotics, Steroidobacter fromthe phylum Proteobacteria has significant positive correlations with the biodegradation of all SAs (p < 0.01), thereby indicating that Steroidobacter had a high capacity for biodegrading SAs. Significant positive correlations were also detected (p < 0.05) between specific genera (Iamia, Parviterribacter, and Gaiella) from the phylum Actinobacteria and the biodegradation of SAs. No significant positive correlations were found between bacterial genera and the biodegradation percentages for QLs and TCs, possibly due to the specific microorganisms involved in these biodegradation processes. The results in this study provide insights into the biodegradation mechanisms of antibiotics in soil and they may facilitate the development of strategies for the bioremediation of antibiotic-contaminated soil. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据