4.7 Article

Faucet aerator design influences aerosol size distribution and microbial contamination level

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 775, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145690

关键词

Airborne transmission; Nosocomial infections; Sink environment; Aerosol characterisation; Aerosol pathogen load; Aerosol sampling techniques

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canadian Institutes of Health Research (CIHR)

向作者/读者索取更多资源

A study evaluated the impact of ten different types of faucet aerators on aerosol production and contamination levels, revealing variations in aerosol particle density and size distribution with different aerator models and their relationship with bacterial load. Aerator models with aeration showed significant differences in aerosol production, while a new low-flow aerator was found to produce significantly fewer contaminated aerosol particles.
Faucet aerators have been linked to multiple opportunistic pathogen outbreaks in hospital, especially Pseudomonas aeruginosa, their complex structure promoting biofilm development. The importance of bacteria aerosolization by faucet aerators and their incidence on the risk of infection remain to be established. In this study, ten different types of aerators varying in complexity, flow rates and type of flow were evaluated in a controlled experimental setup to determine the production of aerosols and the level of contamination. The aerosol particle number density and size distribution were assessed using a particle spectrometer. The bacterial load was quantified with a 14-stage cascade impactor, where aerosol particles were captured and separated by size, then analysed by culture and flow cytometry. The water was seeded with Pseudomonas fluorescens as a bacterial indicator. Aerosol particle size and mean mass distribution varied depending on the aerator model. Devices without aeration or with laminar flow produced the lowest number and mass of aerosol particles when measured with spectrometry. Models with aeration displayed wide differences in their potential production of aerosol particles. A new aerator with a low flow, no air inlet in its structure, and a spray stream produced 12 to 395 times fewer aerosol particles containing bacteria. However, the impact of low flow on biofilm development and incorporation of pathogens should be further investigated. Repeated use of aerators resulted in fouling which increased the quantity of bacteria released through aerosol particles. An in-depth mechanical cleaning including complete dismantling of the aerator was required to recover initial performances. Aerators should be selected to minimize aerosol production, considering the ease of maintenance and the main water usage at each sink. Low flow aerators produced a lower number of contaminated aerosol particles when new but may be more susceptible to fouling and quickly lose their initial advantage. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据