4.7 Article

Diurnal evolutions and sources of water-soluble chromophoric aerosols over Xi'an during haze event, in Northwest China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 786, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.147412

关键词

Atmospheric chromophores; PILS-EEM-TOC; HULIS; Chemical reaction; Haze

资金

  1. National Natural Science Foundation of China [41703102, 41877354]

向作者/读者索取更多资源

This study developed a new experimental system to study water-soluble chromophoric organic matters in atmospheric fine particles, revealing that the majority of atmospheric chromophores in winter originated from primary combustion and coal burning, followed by biomass burning and cooking emissions.
Atmospheric brown carbon and their chemical behavior potentially impacts the climate and air quality. Due to lack of researches on the atmospheric chromophores by using online experimental instrument, so using the offline EEM approaches to study their types, sources and chemical processes. In this study, PILS-EEM-TOC system (Particle into liquid sampler coupled with excitation-emission matrix and total organic carbon) was developed in order to distinguish the hourly evolutions and sources of water-soluble chromophoric organic matters in atmospheric fine particles. The results suggested that the sources of atmospheric chromophores in winter were primary combustion (similar to 90%) and coal burning, followed by biomass burning and cooking emissions in Xi'an (Northwest China). These atmospheric chromophores decay under the combined action of solar radiation and atmospheric oxidants. Meanwhile, the secondary chromophores were mainly highly-oxygenated humic-like substance ( HULE), produced by atmospheric oxidation reactions with the highest peak in the afternoon. The partly secondary chromophores can also be generated through the Maillard-like reaction in the morning, which depends on the relative humidity of the atmosphere. These findings made a deeper understanding of the sources and transformation of atmospheric brown carbon aerosols. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据