4.7 Article

Cadmium-induced oxidative stress and transcriptome changes in the wolf spider Pirata subpiraticus

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 785, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.147364

关键词

Cadmium; Toxicity; Oxidative stress; Transcriptome analysis; Pirata subpiraticus

资金

  1. National Natural Science Foundation of China [32001205]
  2. Natural Science Foundation of Hunan province [2019JJ50236]

向作者/读者索取更多资源

The study explored the toxic effects of acute cadmium exposure on spiders, revealing an accumulation of cadmium in the spiders, altered antioxidant enzyme activities, and significant adverse effects on metabolism, immune response, and oxidative stress. The differential gene expression in response to cadmium exposure provides insights into the spiders' physiological processes affected by heavy metal exposure.
Spiders are believed to have enormous potential for indicating heavy metal pollution in ecosystems. The diversity of influencing factors caused significant differences in the toxicities of cadmium (Cd) on spiders. There is limited understanding of the underlying mechanism and response to acute Cd exposure at different concentrations and different poisoning times. We exposed adult female P. subpiraticus to 0.2 mM and 2 mM Cd for 6 and 12 h, respectively, to explore acute Cd toxicities by RNA-seq. We measured the bioaccumulation levels in P. subpiraticus and tested the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST). There were 187, 292, 101 and 155 differentially expressed genes (DEGs) after exposure to 0.2 mM and 2 mM Cd for 6 and 12 h, respectively. The results revealed that Cd accumulated in P. subpiraticus, changed the SOD and GST activities, and caused significant adverse effects at the molecular level on metabolism and immune and oxidative stress, with time-and concentration-dependent differences. Transcriptome analysis showed that acute Cd exposure depressed lipid metabolism and induced protein metabolism, especially serine metabolism. Genes encoding lipoproteins were depressed when exposed to 0.2 mM Cd, while fatty acid-related genes were downregulated under 2 mM Cd stress. In total, 46 cuticle-related genes were upregulated, and 6 cytoskeleton-related genes changed notably in the immune process. Peroxidase-related genes were further upregulated significantly. Meanwhile, the pathways related to metabolism, immunity and oxidative stress were significantly enriched. This report illustrated that acute Cd exposure exerts toxicities on P. subpiraticus and the spiders against acute Cd toxicities by selective differential expression of the genes associated with the physiological process of metabolism and immune and antioxidant stress. This study provides a comprehensive transcriptional basis for understanding the response of the P. sublimations to heavy metals at different concentrations and different treatment times. (c) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据