4.7 Article

Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 778, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146264

关键词

Microplastics; TBBPA; Joint effects; Caco-2 cell; Gut microbiota

资金

  1. Guangdong Science and Technology Program [2020B121201003]
  2. National Natural Science Foundation of China [U1501234, 41673091]

向作者/读者索取更多资源

This study demonstrated that both PEMPs and TBBPA have detrimental effects on Caco-2 cells, with TBBPA playing a major role and high concentrations of PEMPs also affecting cell viability. TBBPA selectively inhibits the growth of gram-positive bacteria, leading to shifts in microbiota composition that are unfavorable for gut health. The interference of PEMPs and TBBPA also alters metabolism pathways of gut microbiota, highlighting the potential threat to human health.
Microplastics (MPs) pollution becomes an emergent threat to the ecosystem, and its joint effect with organic contaminants will cause more severe consequences. Recently, MPs has been observed in human feces, suggesting that we are exposed to an uncertain danger. In this study, the joint effect of polyethylene microplastics particles (PEMPs) and Tetrabromobisphenol A (TBBPA) on human gut was explored through the simulation experiment in vitro with human cell Caco-2 and gut microbiota. The toxicity of TBBPA and PEMPs on Caco-2 human cells was considered by physiological and biochemical indexes such as cell proliferation, cell cycle, reactive oxygen species, lactate dehydrogenase release, and mitochondrial membrane potential. Besides, microbial community diversity, community structure, and function changes of gut microbiota were investigated using Illumina 16S rRNA gene MiSeq sequencing to reveal the influence of TBBPA and PEMPs on human gut microbiota. The results indicated that both PEMPs and TBBPA would deteriorate the status of Caco-2 cells, and TBBPA played a major role in it; meanwhile, PEMPs affected Caco-2 cells at high concentrations. Particularly, TBBPA and PEMPs exhibited a joint effect on Caco-2 cells to a certain degree. TBBPA selectivity inhibited the growth of gram-positive bacteria such as Enterococcus and Lactobacillus, contributing to the thriving of gram-negative bacteria such as Escherichia and Bacteroides. The existence of PEMPs would enhance the proportion of Clostridium, Bacteroides, and Escherichia. Community composition changed dramatically with the interference of PEMPs and TBBPA; this was undesirable to the healthy homeostasis of the human gut. PICRUSt analysis determined both PEMPs and TBBPA interfered with the metabolism pathways of gut microbiota. Hence, the threat of MPs and TBBPA to humans should arouse vigilance. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据