4.7 Article

Bacterial assembly and succession in the start-up phase of an IFAS metacommunity: The role of AHL-driven quorum sensing

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 777, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145870

关键词

Quorum sensing; Bacterial assembly; Biofilm development; IFAS; Phylogenetic molecular ecological network

资金

  1. National Natural Science Foundation of China [51908275]
  2. Excellent Research Program of Nanjing University [ZYJH005]

向作者/读者索取更多资源

This study examined the assembly and succession of bacterial community in a full-scale IFAS process, highlighting the significant impact of pH on bacterial community composition and AHL content. The negative correlation between AHL concentration and community composition variation was observed during biofilm development. Additionally, quorum-quenching bacteria were found to play a key role in mature biofilms, strengthening bacterial cooperation and promoting biofilm development.
Quorum sensing (QS) plays an important role in biofilm formation and the start-up of biofilm-based reactors, while its involvement in bacterial assembly throughout biofilm development remains underexplored. We investigated the assembly and succession of the bacterial community in a full-scale integrated fixed-film activated sludge (IFAS) process, with emphasis on N-acylhomoserine lactone (AHL)-driven QS. Biofilm development could be divided into two major periods, (i) young biofilm formation phase and (ii) biofilm maturity and update phase. Mature biofilms exhibited lower levels of AHLs compared with young biofilms (p > 0.05). A structural equation model, constructed to assess the linkages between AHL level and bacterial community composition as well as environmental factors, indicated that pH significantly influenced both bacterial community composition and AHL content. Along with biofilm development, there was a negative correlation between AHL concentration and community composition variation (coefficients of & minus;0.367 and & minus;0.329). Regarding the lower AHL level in mature biofilms, these results were consistent with the phylogenetic molecular ecological networks (pMENs) analysis, indicating that quorum-quenching (QQ) bacteria occur in keystone taxa in mature biofilms. In addition, based on the pMENs results, the proportion of positive interactions increased from 77.64 to 82.39% in mature biofilms compared to young biofilms, indicating that bacterial cooperation was strengthened in mature biofilms. The QS bacteria were predominant in the keystone taxa of pMENs, with proportions being increased to 62% in mature biofilms, which is conducive for biofilm development. Overall, this study improves our understanding of the involvement of AHL-mediated QS in biofilm development. (c) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据