4.6 Article

Hybrid quantum-classical convolutional neural networks

期刊

出版社

SCIENCE PRESS
DOI: 10.1007/s11433-021-1734-3

关键词

quantum computing; quantum machine learning; hybrid quantum-classical algorithm; convolutional neural network

资金

  1. National Natural Science Foundation of China [11905294, 11805279]
  2. Youth Talent Lifting Project [2020-JCJQ-QT-030]
  3. China Postdoctoral Science Foundation
  4. State Key Laboratory of High Performance Computing of China [201901-01]

向作者/读者索取更多资源

The study introduces a hybrid quantum-classical convolutional neural network that can efficiently perform feature mapping on noisy intermediate-scale quantum computers, proposes a framework for automatic computation of loss function gradients, and demonstrates the architecture's potential in surpassing classical CNN in learning accuracy for classification tasks.
Deep learning has been shown to be able to recognize data patterns better than humans in specific circumstances or contexts. In parallel, quantum computing has demonstrated to be able to output complex wave functions with a few number of gate operations, which could generate distributions that are hard for a classical computer to produce. Here we propose a hybrid quantum-classical convolutional neural network (QCCNN), inspired by convolutional neural networks (CNNs) but adapted to quantum computing to enhance the feature mapping process. QCCNN is friendly to currently noisy intermediate-scale quantum computers, in terms of both number of qubits as well as circuit's depths, while retaining important features of classical CNN, such as nonlinearity and scalability. We also present a framework to automatically compute the gradients of hybrid quantum-classical loss functions which could be directly applied to other hybrid quantum-classical algorithms. We demonstrate the potential of this architecture by applying it to a Tetris dataset, and show that QCCNN can accomplish classification tasks with learning accuracy surpassing that of classical CNN with the same structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据