4.7 Article

High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Multidisciplinary

Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

Summary: All-polymer solar cells have attracted significant research interest due to their good film formation, stable morphology, and mechanical flexibility. The strategy of polymerizing small-molecule acceptors to construct new-generation polymer acceptors has significantly increased the power conversion efficiency, but current challenges and future prospects still need to be addressed.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

15.4% Efficiency all-polymer solar cells

Long Zhang et al.

Summary: By tuning the molecular weights of the polymer donor, researchers achieved a record-high power conversion efficiency in all-polymer solar cells. The combination of polymer donors with a newly reported polymer acceptor resulted in unprecedented high PCE and fill factor values. Detailed morphology investigation revealed the importance of proper phase separation in achieving superior device performance in all-polymer solar cells.

SCIENCE CHINA-CHEMISTRY (2021)

Article Chemistry, Physical

Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss

Wei Gao et al.

Summary: This study demonstrates that adjusting the molecular conformation of Y6-type NFAs can lead to high efficiency and reduced energy loss in organic solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%

Han Yu et al.

Summary: Fluorination of end groups enhances the performance of polymer acceptors, leading to higher power conversion efficiency in all-polymer solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors

Feng Qi et al.

Summary: Novel NFAs were designed with enhanced absorption edge and high J(sc), leading to efficient organic solar cells with improved power conversion efficiency.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor

Huiting Fu et al.

Summary: A new class of narrow-bandgap polymer acceptors, the PZT series, was developed to address challenges in all-polymer solar cells, resulting in improved performance due to red-shifted optical absorption and up-shifted energy levels. The regioregular PZT-gamma was specifically designed to avoid isomer formation during polymerization, leading to enhanced efficiency, short-circuit current density, and energy loss in all-PSCs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Applied

Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells

Shaorong Huang et al.

Summary: The newly developed polymer acceptors PSF-IDIC and PSi-IDIC, based on extended fused ring p skeleton, exhibit strong light absorption capabilities, with PSF-IDIC showing superior device performance in terms of power conversion efficiency.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Chemistry, Physical

16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend

Tao Liu et al.

Summary: The performance of all-polymer organic solar cells has been improved by introducing a small amount of BN-T, resulting in increased crystallinity and enhanced exciton harvesting and charge transport. This enhancement is attributed to the reduced nonradiative energy loss and improved energy and charge transfer between acceptors, making AP-OSCs potentially as efficient as devices based on small molecule acceptors.
Article Chemistry, Multidisciplinary

Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility

Qunping Fan et al.

Summary: The newly developed multi-selenophene-containing PSMA material PFY-3Se shows outstanding performance in all-polymer solar cells, with high efficiency, low energy loss, and good batch-to-batch reproducibility, indicating great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells

Ruyan Zhao et al.

CHEMISTRY OF MATERIALS (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy

Jiaqi Du et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Multidisciplinary

A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells

Qunping Fan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Highly Efficient All-Polymer Solar Cells Enabled by p-Doping of the Polymer Donor

Xiaopeng Xu et al.

ACS ENERGY LETTERS (2020)

Article Chemistry, Multidisciplinary

High-performance all-polymer solar cells with only 0.47 eV energy loss

Qiang Wu et al.

SCIENCE CHINA-CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

Reducing energy lossviatuning energy levels of polymer acceptors for efficient all-polymer solar cells

Huiliang Sun et al.

SCIENCE CHINA-CHEMISTRY (2020)

Review Chemistry, Multidisciplinary

A-DA'D-A non-fullerene acceptors for high-performance organic solar cells

Qingya Wei et al.

SCIENCE CHINA-CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells

Francis Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency

Qiaoshi An et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

11.2% Efficiency all-polymer solar cells with high open-circuit voltage

Yuan Meng et al.

SCIENCE CHINA-CHEMISTRY (2019)

Review Chemistry, Multidisciplinary

Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

Changyeon Lee et al.

CHEMICAL REVIEWS (2019)

Review Chemistry, Multidisciplinary

Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods

Guodong Wang et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Aromatic-Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications

Jing Yang et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Recent Advances in n-Type Polymers for All-Polymer Solar Cells

Zewdneh Genene et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%

Zhenye Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells

Dong Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Morphology Optimization via Side Chain Engineering Enables All Polymer Solar Cells with Excellent Fill Factor and Stability

Xi Liu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Physical

Design rules for minimizing voltage losses in high-efficiency organic solar cells

Deping Qian et al.

NATURE MATERIALS (2018)

Review Nanoscience & Nanotechnology

Non-fullerene acceptors for organic solar cells

Cenqi Yan et al.

NATURE REVIEWS MATERIALS (2018)

Article Multidisciplinary Sciences

Organic and solution-processed tandem solar cells with 17.3% efficiency

Lingxian Meng et al.

SCIENCE (2018)

Article Chemistry, Physical

Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses

Yuming Wang et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

9.0% power conversion efficiency from ternary all-polymer solar cells

Zhaojun Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2017)

Article Chemistry, Multidisciplinary

Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers

Nanjia Zhou et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)

Article Polymer Science

Morphology and phase segregation of spin-casted films of Polyfluorene/PCBM blends

Svante Nilsson et al.

MACROMOLECULES (2007)

Review Chemistry, Multidisciplinary

Device physics of polymer:fullerene bulk heterojunction solar cells

Paul W. M. Blom et al.

ADVANCED MATERIALS (2007)