4.8 Article

Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility

期刊

SCIENCE
卷 373, 期 6554, 页码 561-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abh3884

关键词

-

向作者/读者索取更多资源

The liquid medium annealing (LMA) technology shows promise in producing high-quality perovskite films and photovoltaic devices with improved crystal growth modulation and film uniformity. This method opens up an effective avenue for scalable and reproducible quality improvement in perovskite films and devices.
Solution processing of semiconductors is highly promising for the high-throughput production of cost-effective electronics and optoelectronics. Although hybrid perovskites have potential in various device applications, challenges remain in the development of high-quality materials with simultaneously improved processing reproducibility and scalability. Here, we report a liquid medium annealing (LMA) technology that creates a robust chemical environment and constant heating field to modulate crystal growth over the entire film. Our method produces films with high crystallinity, fewer defects, desired stoichiometry, and overall film homogeneity. The resulting perovskite solar cells (PSCs) yield a stabilized power output of 24.04% (certified 23.7%, 0.08 cm(2)) and maintain 95% of their initial power conversion efficiency (PCE) after 2000 hours of operation. In addition, the 1-cm(2) PSCs exhibit a stabilized power output of 23.15% (certified PCE 22.3%) and keep 90% of their initial PCE after 1120 hours of operation, which illustrates their feasibility for scalable fabrication. LMA is less climate dependent and produces devices in-house with negligible performance variance year round. This method thus opens a new and effective avenue to improving the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据