4.5 Review

A review of data-driven modelling in drinking water treatment

期刊

出版社

SPRINGER
DOI: 10.1007/s11157-021-09592-y

关键词

Data-driven modelling; Drinking water; Water quality; Machine learning; Artificial intelligence

资金

  1. Natural Sciences and Engineering Research Council (NSERC)

向作者/读者索取更多资源

Data-driven models offer significant opportunities to optimize drinking water treatment and water resource management, but also present challenges such as increased uncertainty in model validity and difficulties in interpreting model behavior. Successful implementation of these models requires validation and scrutiny of decision-making logic.
There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many water treatment models have been developed, such as predicting treated water quality based on coagulant addition or disinfection by-product formation from chlorination, which can be used to better inform operators of optimal treatment parameters to limit risk and reduce cost. Data-driven models, in particular, present an opportunity to learn relationships from patterns in historical data without the need to pre-define mechanisms or variable interactions. Furthermore, models built on currently monitored data are likely easier to implement since they utilize water quality measures that are already in place. However, data-driven approaches have significant challenges, including increased uncertainty in model validity, challenges in interpreting model behaviour and decision logic, and increased likelihood of incorporating biases from training data. This article presents a review of data-driven model applications in drinking water treatment to highlight opportunities related to protecting source water quality, optimizing treatment processes, and interpreting of sensor data. There is a focus on identifying approaches and algorithms best suited for specific applications and the interpretability of trained models. Successful implementation of data-driven models in critical systems, such as water treatment, requires that models be validated, and a model's decision-making logic can be identified and scrutinized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据