4.7 Article

A decadal (2008-2017) daily evapotranspiration data set of 1 km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion

期刊

REMOTE SENSING OF ENVIRONMENT
卷 262, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112519

关键词

Evapotranspiration; Two-source energy balance; Land surface temperature; Data fusion

资金

  1. National Natural Science Foundation of China [52079065, 51722903]
  2. Major Science and Technology Projects of Inner Mongolia Autonomous Region [2020ZD0009]
  3. National Key Research and Development Program of China [2017YFC0405801]
  4. Beijing Outstanding Young Scientist Program [BJJWZYJH01201910028032, 1594/PANGAEA.914866]

向作者/读者索取更多资源

Daily continuous ET estimates at 1 km resolution were successfully obtained across the North China Plain using a data fusion approach and the Two-Source Energy Balance model. The estimated LE and ET data showed good agreement with in situ measurements, capturing seasonal variations and temporal trends effectively.
Daily continuous evapotranspiration (ET) estimates of 1 km spatial resolution can benefit agricultural water resources management at regional scales. Thermal infrared remote sensing-derived land surface temperature (LST) is a critical variable for ET estimation using energy balance-based models. However, missing LST information under cloudy conditions remains a long-standing barrier for spatiotemporally continuous monitoring of daily ET at regional scales. In this study, LST data of 1 km spatial resolution at 11:00 local solar time under allweather conditions across the North China Plain (NCP) were first generated using a data fusion approach developed previously. Second, combined with the generated LST data, MODIS products, and meteorological forcing from the China Land Data Assimilation System, the Two-Source Energy Balance model (TSEB) and a temporal upscaling method were jointly used to estimate daily ET at 1 km spatial resolution across the NCP for a decade from 2008 to 2017. In particular, to better incorporate the impact of crop phenology on ET and improve the ET estimation, the fraction of greenness in TSEB was determined in terms of a leaf area index threshold during the crop growth period. Compared with observed instantaneous latent heat flux (LE) corrected for energy balance closure, the estimated LE reasonably captures inter- and intra-annual variations in LE measured at the Huailai, Daxing, Weishan, and Guantao flux towers, with R2 of 0.63-0.79. Estimated daily ET against in situ ET measurements with energy balance closure at the Huailai, Daxing, and Guantao sites showed good performance in terms of R2 greater than 0.70 and RMSE below 0.91 mm/d. These accuracies are comparable with published results, with our ET data set validated by many more observations than previous studies and featuring spatiotemporal continuity and high spatial resolution across the entire NCP for a decade. Furthermore, seasonal ET variations reflected by our product outperform two widely used global products in capturing water consumption characteristics in the winter wheat-summer maize rotation system. In terms of temporal trends, annual ET estimates across the NCP show a decreasing and then increasing trend over the past decade, which is attributed to the increased cropping intensity over the recent years reflected by an increase in leaf area index.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据