4.7 Article

Joint optimization of mission abort and component switching policies for multistate warm standby systems

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2021.107641

关键词

System survivability; Mission success probability; Warm standby; Component switching

资金

  1. National Natural Science Foundation of China [71971026, 72001026]
  2. China Postdoctoral Science Foundation [2020M680399]

向作者/读者索取更多资源

This paper introduces a joint optimization model that combines component switching and mission abort policies to balance the trade-off between mission success probability and system survivability, minimizing total economic loss. A numerical study on a virtual machine system is conducted to demonstrate the effectiveness of the model.
Safety-critical systems have been widely applied in various practical engineering fields to perform specific missions. Failures of such systems will lead to significant damage, thus, mission abort polices can be implemented to enhance system survivability. Warm standby is one of the most commonly used techniques in missioncritical and safety-critical systems to reduce failure risk during mission execution. Switching between working component and standby component is a feasible way to balance component degradation and extend system lifetime. Motivated by these results, we propose a joint optimization model that captures both component switching and mission abort policies for multistate warm standby systems. The optimal component switching and mission abort policies based on component condition are obtained to balance the trade-off between mission success probability and system survivability and to minimize the long-run expected total economic loss. A numerical study of virtual machine system is conducted to demonstrate the proposed model and obtained results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据