4.8 Article

Mitochondria-dependent synthetic small-molecule vaccine adjuvants for influenza virus infection

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2025718118

关键词

NF-kappa B; mitochondrial reactive oxygen species; mitochondrial stress; vaccine adjuvant; influenza virus

资金

  1. NIH/National Institute of Allergy and Infectious Diseases [HHSN272201400051C, 75N93019C00042]

向作者/读者索取更多资源

In this study, a novel adjuvant compound 2F52 was identified, which demonstrated potent immunomodulatory effects without the need for known pattern-recognition receptors. The compound showed promising results in enhancing immune responses and providing protective effects in a mouse model of lethal virus challenge. These findings suggest that compound 2F52 could be a valuable addition to vaccines as a safe and effective adjuvant.
Vaccine adjuvants enhance and prolong pathogen-specific protective immune responses. Recent reports indicate that host factors-such as aging, pregnancy, and genetic polymorphisms-influence efficacies of vaccines adjuvanted with Toll-like receptor (TLR) or known pattern-recognition receptor (PRR) agonists. Although PRR independent adjuvants (e.g., oil-in-water emulsion and saponin) are emerging, these adjuvants induce some local and systemic reactogenicity. Hence, new TLR and PRR-independent adjuvants that provide greater potency alone or in combination without compromising safety are highly desired. Previous cell-based high throughput screenings yielded a small molecule 81 [N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide], which enhanced lipopolysaccharide-induced NF-KB and type I interferon signaling in reporter assays. Here compound 81 activated innate immunity in primary human peripheral blood mononuclear cells and murine bone marrow-derived dendritic cells (BMDCs). The innate immune activation by 81 was independent of TLRs and other PRRs and was significantly reduced in mitochondrial antiviral-signaling protein (MAVS)deficient BMDCs. Compound 81 activities were mediated by mitochondrial dysfunction as mitophagy inducers and a mitochondria specific antioxidant significantly inhibited cytokine induction by 81. Both compound 81 and a derivative obtained via structure-activity relationship studies, 2F52 [N-benzyl-N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide] modestly increased mitochondrial reactive oxygen species and induced the aggregation of MAVS. Neither 81 nor 2F52 injected as adjuvants caused local or systemic toxicity in mice at effective concentrations for vaccination. Furthermore, vaccination with inactivated influenza virus adjuvanted with 2F52 demonstrated protective effects in a murine lethal virus challenge study. As an unconventional and safe adjuvant that does not require known PRRs, compound 2F52 could be a useful addition to vaccines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据