4.7 Article

Numerical investigation of the penetrating gas flow into particle clusters for circulating fluidized beds

期刊

POWDER TECHNOLOGY
卷 388, 期 -, 页码 442-449

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2021.04.046

关键词

Particle clusters; Circulating fluidized bed; Gas-cluster interaction; Discrete element method; Numerical simulation

向作者/读者索取更多资源

Gas-solid circulating fluidized beds (CFBs) are widely used as reactors in industry, and the performance heavily relies on the interaction between gas and clusters. This study numerically quantified the gas-cluster interaction and proposed an empirical correlation to quantify the interaction, contributing significantly to the design and optimization of CFBs.
Gas-solid circulating fluidized beds (CFBs) are widely used as reactors in industry with performances heavily re-lying on the interaction between gas and particles. In a CFB, some particles stay dispersed, while other particles aggregate to form dense and large clusters. As the gas-particle interaction is simple for dispersed particles, the prediction of reactor performances calls for a thorough analysis of the gas-cluster interaction. In the literature, cluster properties have been characterized extensively. However, how the gas interacts with clusters has not been quantified systematically yet. In this work, the gas-cluster interaction was quantified numerically by char-acterizing the penetrating gas flow into clusters. With 99 simulations, influences of the particle randomness, clus-ter solids holdup, cluster diameter, particle diameter, superficial gas velocity and fluid properties on the gas -cluster interaction were investigated systematically. Then, an empirical correlation was proposed to quantify the gas-cluster interaction, significantly contributing to the design and optimization of CFBs. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据