4.6 Article

Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms

期刊

PLOS ONE
卷 16, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0254025

关键词

-

资金

  1. Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico [IN-209620]
  2. Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo [P918PTE0261]
  3. CONACYT [338189]

向作者/读者索取更多资源

The study identified similarities and differences between regulatory proteins in archaea and bacteria, including differences in TF family abundances and properties like acidity and size. Despite commonalities, regulatory proteins in archaea and bacteria have undergone divergence, as indicated by these findings.
Archaea represent a diverse phylogenetic group that includes free-living, extremophile, mesophile, symbiont, and opportunistic organisms. These prokaryotic organisms share a high significant similarity with the basal transcriptional machinery of Eukarya, and they share regulatory mechanisms with Bacteria, such as operonic organization and DNA-binding transcription factors (TFs). In this work, we identified the repertoire of TFs in 415 archaeal genomes and compared them with their counterparts in bacterial genomes. The comparisons of TFs, at a global level and per family, allowed us to identify similarities and differences between the repertoires of regulatory proteins of bacteria and archaea. For example, 11 of 62 families are more highly abundant in archaea than bacteria, and 13 families are abundant in bacteria but not in archaea and 38 families have similar abundances in the two groups. In addition, we found that archaeal TFs have a lower isoelectric point than bacterial proteins, i.e., they contain more acidic amino acids, and are smaller than bacterial TFs. Our findings suggest a divergence occurred for the regulatory proteins, even though they are common to archaea and bacteria. We consider that this analysis contributes to the comprehension of the structure and functionality of regulatory proteins of archaeal organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据