4.6 Article

Survival prediction based on the gene expression associated with cancer morphology and microenvironment in primary central nervous system lymphoma

期刊

PLOS ONE
卷 16, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0251272

关键词

-

资金

  1. MEXT KAKENHI [16H05441, 18K09001]
  2. Grants-in-Aid for Scientific Research [18K09001] Funding Source: KAKEN

向作者/读者索取更多资源

Dysregulation of cell morphology and cell-cell interaction is crucial for cancer cell growth and metastasis. The balance between ECM and MMP plays a key role in cancer cell morphology and angiogenesis. Gene signatures associated with PCNSL morphology and microenvironment were identified through NGS, with prognostic prediction formulas developed and collagen genes found to contribute to microenvironment regulation. A combinatorial expression of representative genes enabled precise prognosis prediction and diagnosis of PCNSL cell types with MTX resistance.
Dysregulation of cell morphology and cell-cell interaction results in cancer cell growth, migration, invasion, and metastasis. Besides, a balance between the extracellular matrix (ECM) and matrix metalloprotease (MMP) is required for cancer cell morphology and angiogenesis. Here, we determined gene signatures associated with the morphology and microenvironment of primary central nervous system lymphoma (PCNSL) to enable prognosis prediction. Next-generation sequencing (NGS) on 31 PCNSL samples revealed gene signatures as follows: ACTA2, ACTR10, CAPG, CORO1C, KRT17, and PALLD in cytoskeleton, CDH5, CLSTN1, ITGA10, ITGAX, ITGB7, ITGA8, FAT4, ITGAE, CDH10, ITGAM, ITGB6, and CDH18 in adhesion, COL8A2, FBN1, LAMB3, and LAMA2 in ECM, ADAM22, ADAM28, MMP11, and MMP24 in MMP. Prognosis prediction formulas with the gene expression values and the Cox regression model clearly divided survival curves of the subgroups in each status. Furthermore, collagen genes contributed to gene network formation in glasso, suggesting that the ECM balance controls the PCNSL microenvironment. Finally, the comprehensive balance of morphology and microenvironment enabled prognosis prediction by a combinatorial expression of 8 representative genes, including KRT17, CDH10, CDH18, COL8A2, ADAM22, ADAM28, MMP11, and MMP24. Besides, these genes could also diagnose PCNSL cell types with MTX resistances in vitro. These results would not only facilitate the understanding of biology of PCNSL but also consider targeting pathways for anti-cancer treatment in personalized precision medicine in PCNSL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据