4.7 Article

Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations

期刊

PLANT SCIENCE
卷 308, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2021.110927

关键词

Kiwifruit; bZIP; AREBs; ABFs; Osmotic stress; Freezing tolerance; ROS

资金

  1. National Key Research and Development Program [2016YFD0400102]
  2. Northwest AF University [Z101022001]

向作者/读者索取更多资源

Chilling injury is a barrier to kiwifruit refrigeration, but understanding the molecular basis of the cold response in refrigerated kiwifruit is crucial. The study identified 81 bZIP family proteins in kiwifruit and revealed that the expression of AREB/ABF family members is induced by low temperature and ABA. Ectopic expression of AchnABF1 enhances cold tolerance in plants and is involved in osmotic stress response.
Chilling injury (CI) is a barrier to the refrigeration of kiwifruit, resulting in decreased fruit quality and increased nutrient loss during storage. Understanding the molecular basis underlying the cold response and its regulation in refrigerated kiwifruit is therefore highly important. Basic (region) leucine zipper (bZIP) transcription factors (TFs) have been widely studied for their roles in abiotic stress resistance in various species. In this study, we identified 81 bZIP family proteins in kiwifruit and classified them into 11 groups. Further transcriptome analysis revealed that the expression of members of the AREB/ABF family was strongly induced by low temperature and abscisic acid (ABA). Ectopic expression of AchnABF1 enhanced plant cold tolerance by upregulating the expression of several key genes associated with ABA-dependent and ABA-independent pathways in Arabidopsis thaliana. Reactive oxygen species (ROS) metabolism was suggested to be involved in the AchnABF1-mediated osmotic stress response. For instance, enhanced ROS-scavenging ability was observed in transgenic plants with enhanced activity of catalase (CAT) and peroxidase (POD), which resulted in decreased in situ O-2(center dot-) and H2O2 accumulation, ion leakage, and malondialdehyde (MDA) content under various abiotic stresses. In addition, AchnABF1 also participated in the osmotic stress response during both the germination and postgermination stages. We concluded that AchnABF1 may play an important role in kiwifruit during refrigeration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据