4.6 Article

CT radiomic features of photodynamic priming in clinical pancreatic adenocarcinoma treatment

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 66, 期 17, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6560/ac1458

关键词

photodynamic therapy; radiomics; CT texture analysis; pancreatic cancer

资金

  1. NIH [P01 CA084203]

向作者/读者索取更多资源

This study investigated the potential of radiomic analysis using CT scans to identify PDT-induced necrosis areas and quantify PDP effects in pancreatic tumors. The results showed significant differences in intensity and texture-based features in areas with PDT-induced necrosis and in surrounding tissues affected by PDP. Texture features extracted from CT scans could be utilized for clinical diagnostic prediction and assessment of PDT and PDP effects in pancreatic tumors.
Photodynamic therapy (PDT) offers localized focal ablation in unresectable pancreatic tumors while tissues surrounding the treatment volume experience a lower light dose, termed photodynamic priming (PDP). While PDP does not cause tissue damage, it has been demonstrated to promote vascular permeability, improve drug delivery, alleviate tumor cell density, and reduce desmoplasia and the resultant internal pressure in pre-clinical evaluation. Preclinical data supports PDP as a neoadjuvant therapy beneficial to subsequent chemotherapy or immunotherapy, yet it is challenging to quantify PDP effects in clinical treatment without additional imaging and testing. This study investigated the potential of radiomic analysis using CT scans acquired before and after PDT to identify areas experiencing PDT-induced necrosis as well as quantify PDP effects in the surrounding tissues. A total of 235 CT tumor slices from seven patients undergoing PDT for pancreatic tumors were examined. Radiomic features assessed included intensity metrics (CT number in Hounsfield Units) and texture analysis using several gray-level co-occurrence matrix (GLCM) parameters. Pre-treatment scans of tumor areas that resulted in PDT-induced necrosis showed statistically significant differences in intensity and texture-based features that could be used to predict the regions that did respond (paired t-test, response versus no response, p < 0.001). Evaluation of PDP effects on the surrounding tissues also demonstrated statistically significant differences, in tumor mean value, standard deviation, and GLCM parameters of contrast, dissimilarity and homogeneity (t-test, pre versus post, p < 0.001). Using leave-one-out cross validation, six intensity and texture-based features were combined into a support-vector machine model which demonstrated reliable prediction of treatment effects for six out of seven patients (ROC curve, AUC = 0.93). This study provides pilot evidence that texture features extracted from CT scans could be utilized as an effective clinical diagnostic prediction and assessment of PDT and PDP effects in pancreatic tumors. (clinical trial NCT03033225)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据