4.8 Article

Experimental Observation of Interorbital Coupling

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.066601

关键词

-

资金

  1. Millennium Science Initiative Program [ICN17-012]
  2. FONDECYT [1191205, 3190601]

向作者/读者索取更多资源

In this study, interorbital coupling is experimentally demonstrated using femtosecond laser writing technique, showing that fundamental and excited orbital states can be coupled at different spatial positions. A solution for a spatial mode converter device is proposed, and a trimer configuration is suggested as a phase beam splitter for multiplexing and interference-based photonic concatenated operations.
Interorbital coupling refers to the possibility of exciting orbital states by otherwise orthogonal noninteracting modes, a forbidden process in photonic lattices due to intrinsic propagation constant detuning. In this Letter, using a femtosecond (fs) laser writing technique, we experimentally demonstrate that fundamental and excited orbital states can couple each other when located at different spatial positions. We perform a full characterization of an asymmetric double-well-like potential and implement a scan method to effectively map the dynamics along the propagation coordinate. Our fundamental observation also constitutes a direct solution for a spatial mode converter device, which could be located in any position inside a photonic glass chip. By taking advantage of the phase structure of higher-order photonic modes and the effective negative coupling generated, we propose a trimer configuration as a phase beam splitter, which could be of great relevance for multiplexing and interference-based photonic concatenated operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据