4.8 Article

Migdal Effect in Semiconductors

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.081805

关键词

-

资金

  1. Department of Energy [DE-SC0019195]
  2. UC Hellman fellowship
  3. Alfred P. Sloan Foundation fellowship
  4. U.S. Department of Energy (DOE) [DE-SC0019195] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

By studying the Migdal effect caused by dark matter-nucleus scattering in semiconductors, it has been found that the rate of the Migdal effect is much higher, significantly improving the sensitivity of experiments to sub-GeV dark matter.
When a nucleus in an atom undergoes a collision, there is a small probability of an electron being excited inelastically as a result of the Migdal effect. In this Letter, we present the first complete derivation of the Migdal effect from dark matter-nucleus scattering in semiconductors, which also accounts for multiphonon production. The rate of the Migdal effect can be expressed in terms of the energy loss function of the material, which we calculate with density functional theory methods. Because of the smaller gap for electron excitations, we find that the rate for the Migdal effect is much higher in semiconductors than in atomic targets. Accounting for the Migdal effect in semiconductors can therefore significantly improve the sensitivity of experiments such as DAMIC, SENSEI, and SuperCDMS to sub-GeV dark matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据