4.8 Article

Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.064501

关键词

-

资金

  1. Wenner-Gren Foundations
  2. MSCA EF Seal of Excellence IF-2018 from Vinnova, Sweden's Innovation Agency [2019-04856]
  3. Natural Sciences [8021-00310B]
  4. European Research Council (ERC) under the European Union [852590]
  5. Independent Research Fund Denmark
  6. Vinnova [2019-04856] Funding Source: Vinnova
  7. European Research Council (ERC) [852590] Funding Source: European Research Council (ERC)
  8. Swedish Research Council [2019-04856] Funding Source: Swedish Research Council

向作者/读者索取更多资源

The study reveals that using a non-dissipative acoustic body force created by light-induced temperature gradients significantly increases the velocity of acoustic streaming in liquids, outperforming traditional Rayleigh streaming and Rayleigh-Benard convection. This thermoacoustic streaming has the potential to enhance heat transfer efficiency at the microscale.
We study acoustic streaming in liquids driven by a nondissipative acoustic body force created by light-induced temperature gradients. This thermoacoustic streaming produces a velocity amplitude nearly 100 times higher than the boundary-driven Rayleigh streaming and the Rayleigh-Benard convection at a temperature gradient of 10 K/mm in the channel. The Rayleigh streaming is altered by the acoustic body force at a temperature gradient of only 0.5 K/mm. The thermoacoustic streaming allows for modular flow control and enhanced heat transfer at the microscale. Our study provides the groundwork for studying microscale acoustic streaming coupled with temperature fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据