4.7 Article

Repeated endosulfan exposure induces changes in neurochemicals, decreases ATPase transmembrane ionic-pumps, and increased oxidative/nitrosative stress in the brains of rats: Reversal by quercetin

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2021.104833

关键词

Organochlorine; Pesticides; Neurotoxicants; Neurodegenerative diseases; Flavonoids; Qquercetin

向作者/读者索取更多资源

This study demonstrated the potential of quercetin in ameliorating neurotoxicity induced by endosulfan through regulation of neurochemicals, ATPase activities, ammonia levels, and oxidative/nitrosative stress in rat brains. Quercetin was able to restore levels of neurotransmitters, inhibit acetylcholinesterase activity, and reduce oxidative/nitrosative stress caused by endosulfan exposure.
Neurochemical and ATPase deregulations play important role in toxicant-induced neurodegeneration. Previous studies have shown that loss of ATPase ionic-pumps alters neurochemical balance via increased ammonia, oxidative and nitrosative stress. Thus, this study investigated the ameliorative potentials of quercetin on neurochemical, ATPase changes, hyperammonemia and oxidative/nitrosative status in the brains of Wistar rats exposed to endosulfan, a known toxic environmental pesticide that is casually used in many developing countries. Adult rats were divided into five treatment groups (n = 5). Groups 1-2 received normal saline and corn oil (vehicle) (10 mL/kg/day), group 3 received quercetin (20 mg/kg/day) orally for 28 days consecutively. However, animals in groups 4-5 were given endosulfan (5 mg/kg/day, p.o) for 28 days. But, from the 14th to 28th day, group 4 additionally received vehicle (10 mL/kg/day, p.o.), while group 5 was treated with quercetin (20 mg/kg/day, p.o.). Thereafter, brain levels of neurochemicals, ATPase activities, ammonia and oxidative/nitrosative stress were investigated by employing standardized biochemical assay protocols. Quercetin increased endosulfan-induced decreased levels of norepinephrine, dopamine, GABA, and decreased elevated concentrations of glutamate and serotonin. Quercetin normalized the increased levels of acetylcholinesterase and ammonia. Furthermore, quercetin significantly reversed the decrease in Na+/K+, Ca2+, Mg2+-ATPase activities induced by endosulfan. Also, quercetin increased superoxide dismutase, catalase and glutathione peroxidase activities, and reduced nitrite and peroxynitrite levels in brains of rats. These findings further provide evidence of the ameliorative potential of quercetin against endosulfan-induced neurotoxicity via attenuation of neurochemical, ATPase changes, and inhibition of acetylcholinesterase activity, ammonia release and oxidative/ nitrosative stress in rat brains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据