4.8 Article

NK and NKT cells have distinct properties and functions in cancer

期刊

ONCOGENE
卷 40, 期 27, 页码 4521-4537

出版社

SPRINGERNATURE
DOI: 10.1038/s41388-021-01880-9

关键词

-

资金

  1. American Cancer Society [RSG10-160-01-LIB]
  2. Melanoma Research Alliance
  3. NIH [CA184379, CA242188, CA237149, AG067441]

向作者/读者索取更多资源

NK and NKT cells exhibit distinct properties and functions during tumor development. While NK cells become senescent cells in later cancer stages, NKT cells, especially iNKT cells, develop increased activation within the tumor microenvironment. Exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models.
Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据