4.5 Article

Completion of JT-60SA construction and contribution to ITER

期刊

NUCLEAR FUSION
卷 62, 期 4, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-4326/ac10e7

关键词

assembly; research plan; ITER risk mitigation; broader approach

资金

  1. EUROfusion Consortium
  2. EURATOM research and training programme [633053]

向作者/读者索取更多资源

The construction of the JT-60SA tokamak was completed on schedule in March 2020. All main components were manufactured and assembled to meet technical requirements, and progress was made in the development of plasma heating systems and diagnostics. The development of operation control systems and an improved plasma equilibrium control scheme suitable for superconducting tokamaks including ITER has also been completed.
Construction of the JT-60SA tokamak was completed on schedule in March 2020. Manufacture and assembly of all the main tokamak components satisfied technical requirements, including dimensional accuracy and functional performances. Development of the plasma heating systems and diagnostics have also progressed, including the demonstration of the favourable electron cyclotron range of frequency (ECRF) transmission at multiple frequencies and the achievement of long sustainment of a high-energy intense negative ion beam. Development of all the tokamak operation control systems has been completed, together with an improved plasma equilibrium control scheme suitable for superconducting tokamaks including ITER. For preparation of the tokamak operation, plasma discharge scenarios have been established using this advanced equilibrium controller. Individual commissioning of the cryogenic system and the power supply system confirmed that these systems satisfy design requirements including operational schemes contributing directly to ITER, such as active control of heat load fluctuation of the cryoplant, which is essential for dynamic operation in superconducting tokamaks. The integrated commissioning (IC) is started by vacuum pumping of the vacuum vessel and cryostat, and then moved to cool-down of the tokamak and coil excitation tests. Transition to the super-conducting state was confirmed for all the TF, EF and CS coils. The TF coil current successfully reached 25.7 kA, which is the nominal operating current of the TF coil. For this nominal toroidal field of 2.25 T, ECRF was applied and an ECRF plasma was created. The IC was, however, suspended by an incident of over current of one of the superconducting equilibrium field coil and He leakage caused by insufficient voltage holding capability at a terminal joint of the coil. The unique importance of JT-60SA for H-mode and high-beta steady-state plasma research has been confirmed using advanced integrated modellings. These experiences of assembly, IC and plasma operation of JT-60SA contribute to ITER risk mitigation and efficient implementation of ITER operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据