4.1 Article

Native and exotic grasses share generalist foliar fungi in a Canterbury high country grassland

期刊

NEW ZEALAND JOURNAL OF ECOLOGY
卷 45, 期 2, 页码 -

出版社

NEW ZEALAND ECOL SOC
DOI: 10.20417/nzjecol.45.23

关键词

community composition; culturing; endophyte; pathogen; plant-fungal interactions

类别

资金

  1. Tertiary Education Commission

向作者/读者索取更多资源

The study found that there were no significant differences in the diversity and community composition of culturable foliar fungi between native and exotic grass species in a high-country grassland in Canterbury, Aotearoa New Zealand. However, native grass species hosted more fungi isolated from only one host species, while exotic grass species hosted more fungi isolated from multiple hosts.
Communities of foliar fungal pathogens and endophytes can influence the success and impacts of exotic plants. A key unresolved question concerns how these foliar fungal communities are structured, including whether they systematically differ between native and exotic plants, or are influenced by plant phylogeny and host abundance. To address these questions, we used culturing and Sanger sequencing to characterise the culturable foliar fungal communities of three native and seven exotic grass species that co-occurred in a high-country grassland in Canterbury, Aotearoa New Zealand. We tested the following predictions: Diversity and community composition of culturable foliar fungi differs (1) between native and exotic grass species, (2) between common and rare grass species, and (3) more closely related grass species host more similar fungal communities. We identified 39 fungal operational taxonomic units (OTUs) from 201 isolates. Overall, native and exotic grass species did not differ in their foliar fungal diversity, community composition, or the relative isolation frequency (i.e. abundance) of potential pathogens. However, native grasses hosted a higher proportion of foliar fungi that were isolated from only one host species than exotics (i.e. rare or specialist fungi), possibly due to their longer coevolutionary history with resident fungi. Common grass species (three exotics and two natives) also hosted more fungi that were isolated from only one host species than rare grasses, potentially driven by their greater connectivity and reduced dispersal limitation of foliar fungi. Closely related grass species did not host more similar fungal communities, indicating that host species phylogeny was not a useful predictor of foliar fungal community structure in this high-country grassland. Taken together, our results suggest that exotic grasses have integrated into the resident community via generalist foliar fungi and do not escape from foliar fungal pathogens, with potential for indirect impacts of exotics on co-occurring native plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据