4.6 Article

WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone

期刊

NEW PHYTOLOGIST
卷 232, 期 1, 页码 190-207

出版社

WILEY
DOI: 10.1111/nph.17554

关键词

free IAA; NH4+ efflux; NH4+ toxicity; protein N-glycosylation; root growth inhibition; WRKY46

资金

  1. National Natural Science Foundation of China [31430095, 31601823]
  2. Natural Science Foundation of Jiangsu Province [BK20200050]
  3. University of Melbourne

向作者/读者索取更多资源

This study reveals that WRKY46 inhibits NH4+ efflux by negatively regulating the transcription of NUDX9 and IAA-conjugating genes, leading to the positive regulation of free IAA content and protein N-glycosylation stability, ultimately reducing NH4+ suppression on the primary root in the root elongation zone (EZ).
Ammonium (NH4+) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+, was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+-suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据