4.6 Article

Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets

期刊

NEW PHYTOLOGIST
卷 232, 期 3, 页码 1368-1381

出版社

WILEY
DOI: 10.1111/nph.17660

关键词

avirulence; cell death; effector-triggered immunity; NLR; plant immunity; plant pathogen co-evolution; potato late blight; resistance protein

资金

  1. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/P020569/1, BB/N009967/1, BB/L026880/1, 787764]
  2. Scottish Government Rural and Environment Science and Analytical Services Division (RESAS)
  3. National Natural Science Foundation of China [31761143007]
  4. BBSRC [BB/N009967/1, BB/L026880/1, BB/P020569/1] Funding Source: UKRI

向作者/读者索取更多资源

The research reveals that different BSL phosphatases contribute differently to the hypersensitive response mediated by R2 and Rpi-mcq1. The association with BSL1 determines the recognition of PiAVR2 by R2, while BSL2 and BSL3 mediate the perception of PiAVR2 by Rpi-mcq1.
Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据