4.6 Article

Coupled activity-current fluctuations in open quantum systems under strong symmetries

期刊

NEW JOURNAL OF PHYSICS
卷 23, 期 7, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ac0f19

关键词

fluctuations; spins; large deviations; non-equilibrium; quantum open systems

资金

  1. Spanish Ministry and Agencia Estatal de Investigacion (AEI) [FIS2017-84256-P]
  2. Consejeria de Conocimiento, Investigacion y Universidad, Junta de Andalucia
  3. European Regional Development Fund [A-FQM-175-UGR18, SOMM17/6105/UGR]

向作者/读者索取更多资源

This study investigates the impact of strong symmetries on the transport properties and activity patterns of a specific class of Markovian open quantum system. The findings reveal the existence of multiple steady states and dynamical phase transitions, as well as joint large deviation statistics of activity and current at specific stages.
Strong symmetries in open quantum systems lead to broken ergodicity and the emergence of multiple degenerate steady states. From a quantum jump (trajectory) perspective, the appearance of multiple steady states is related to underlying dynamical phase transitions (DPTs) at the fluctuating level, leading to a dynamical coexistence of different transport channels classified by symmetry. In this paper we investigate how strong symmetries affect both the transport properties and the activity patterns of a particular class of Markovian open quantum system, a three-qubit model under the action of a magnetic field and in contact with a thermal bath. We find a pair of twin DPTs in exciton current statistics, induced by the strong symmetry and related by time reversibility, where a zero-current exchange-antisymmetric phase coexists with a symmetric phase of negative exciton current. On the other hand, the activity statistics exhibits a single DPT where the symmetric and antisymmetric phases of different but nonzero activities dynamically coexists. Interestingly, the maximum current and maximum activity phases do not coincide for this three-qubits system. We also investigate how symmetries are reflected in the joint large deviation statistics of the activity and the current, a central issue in the characterization of the complex quantum jump dynamics. The presence of a strong symmetry under nonequilibrium conditions implies non-analyticities in the dynamical free energy in the dual activity-current plane (or equivalently in the joint activity-current large deviation function), including an activity-driven current lockdown phase for activities below some critical threshold. Remarkably, the DPT predicted around the steady state and its Gallavotti-Cohen twin dual are extended into lines of first-order DPTs in the current-activity plane, with a nontrivial structure which depends on the transport and activity properties of each of the symmetry phases. Finally, we also study the effect of a symmetry-breaking, ergodicity-restoring dephasing channel on the coupled activity-current statistics for this model. Interestingly, we observe that while this dephasing noise destroys the symmetry-induced DPTs, the underlying topological symmetry leaves a dynamical fingerprint in the form of an intermittent, bursty on/off dynamics between the different symmetry sectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据