4.7 Article

Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia

期刊

NEUROLOGY
卷 97, 期 16, 页码 E1571-E1582

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/WNL.0000000000012698

关键词

-

资金

  1. Canadian Institutes of Health Research [MOP-57840, 123,520]
  2. Natural Sciences and Engineering Research Council of Canada [243141, 24779]
  3. Epilepsy Canada
  4. Brain Canada

向作者/读者索取更多资源

The study successfully tested a multicenter-validated deep learning algorithm that accurately detects MRI-negative focal cortical dysplasia, demonstrating high sensitivity and confidence in risk stratification. This approach shows potential to assist clinicians in adjusting hypotheses and increasing diagnostic confidence in patients with epilepsy.
Background and Objective To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD). Methods We used clinically acquired 3-dimensional (3D) T1-weighted and 3D fluid-attenuated inversion recovery MRI of 148 patients (median age 23 years [range 2-55 years]; 47% female) with histologically verified FCD at 9 centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed MRI-negative in 51% of patients, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 cases with FCD (13 +/- 10 years). Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy disease tested specificity. Results Overall sensitivity was 93% (137 of 148 FCD detected) using a leave-one-site-out cross-validation, with an average of 6 false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half, it ranked the highest. Sensitivity in the independent cohort was 83% (19 of 23; average of 5 false positives per patient). Specificity was 89% in healthy and disease controls. Discussion This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification, this classifier may assist clinicians in adjusting hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for presurgical evaluation of MRI-negative epilepsy. Classification of Evidence This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in patients with epilepsy initially diagnosed as MRI negative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据