4.7 Article

Heartbeat and somatosensory perception

期刊

NEUROIMAGE
卷 238, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2021.118247

关键词

Somatosensory processing; Perceptual awareness; Electrophysiology; Interoception

向作者/读者索取更多资源

Our perception of the external world is influenced by internal bodily signals, including the timing of stimulation along the cardiac cycle and fluctuations of heartbeat-evoked potential (HEP) amplitudes. These internal signals affect somatosensory perception and neural processing. Additionally, increased conscious perception seems to be associated with HEP fluctuations in certain brain regions, while engagement in somatosensory tasks leads to decreased HEP amplitudes.
Our perception of the external world is influenced by internal bodily signals. For example, we recently showed that timing of stimulation along the cardiac cycle and spontaneous fluctuations of heartbeat-evoked potential (HEP) amplitudes influence somatosensory perception and the associated neural processing (Al et al., 2020). While cardiac phase affected detection sensitivity and late components of the somatosensory-evoked potentials (SEPs), HEP amplitudes affected detection criterion and both early and late SEP components. In a new EEG study, we investigate whether these results are replicable in a modified paradigm, which includes two succeeding temporal intervals. In one of the intervals, subjects received a weak electrical finger stimulation and reported first whether they detected any stimulation and then allocated the stimulus to one of the two intervals. Our results confirm the previously reported cardiac cycle and prestimulus HEP effects on somatosensory perception and evoked potentials. In addition, we obtained two new findings. Source analyses in this and our original study show that the increased likelihood of conscious perception goes along with HEP fluctuations in parietal and posterior cingulate regions, known to play important roles in interoceptive processes. Furthermore, HEP amplitudes were shown to decrease when subjects engaged in the somatosensory task compared to a resting state condition. Our findings are consistent with the view that HEP amplitudes are a marker of interoceptive (versus exteroceptive) attention and provide a neural underpinning for this view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据