4.7 Review

Cellular functions of the protein kinase ATM and their relevance to human disease

期刊

NATURE REVIEWS MOLECULAR CELL BIOLOGY
卷 22, 期 12, 页码 796-814

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41580-021-00394-2

关键词

-

向作者/读者索取更多资源

Deficiency in the protein kinase ATM - a master regulator of double-strand DNA breaks and stress responses - causes ataxia telangiectasia (A-T). Recent studies link A-T with other neurodegenerative disorders, and implicate reactive oxygen species, mitochondrial dysfunction, defects in proteostasis and metabolism, and increased poly(ADP-ribosyl)ation in the aetiology of A-T.
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation. Deficiency in the protein kinase ATM - a master regulator of double-strand DNA breaks and stress responses - causes ataxia telangiectasia (A-T). Recent studies link A-T with other neurodegenerative disorders, and implicate reactive oxygen species, mitochondrial dysfunction, defects in proteostasis and metabolism, and increased poly(ADP-ribosyl)ation in the aetiology of A-T.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据