4.8 Article

SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Biochemistry & Molecular Biology

UCSF ChimeraX: Structure visualization for researchers, educators, and developers

Eric F. Pettersen et al.

Summary: UCSF ChimeraX is a powerful visualization program with enhanced performance and graphics, offering new tools and analysis features, support for various areas like virtual reality, and improved ease of use, along with an app store for researchers to contribute new tools.

PROTEIN SCIENCE (2021)

Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Immunology

Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo

Alexandra Schafer et al.

Summary: The study shows that combined use of hu-mAbs is effective for prevention and therapy of SARS-CoV-2 infection, but in vivo protection is influenced by intact effector function.

JOURNAL OF EXPERIMENTAL MEDICINE (2021)

Article Multidisciplinary Sciences

A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate

Lorena Sanchez-Felipe et al.

Summary: The candidate vaccine YF-S0, utilizing the YF17D vaccine as a vector to express noncleavable prefusion form of the SARS-CoV-2 spike antigen, showed excellent safety, immunogenicity, and efficacy in animal models. It induced high levels of neutralizing antibodies, provided protective immunity against SARS-CoV-2, and prevented infection in hamsters and macaques. A single dose was able to confer protection from lung disease in most vaccinated hamsters within 10 days, highlighting the potential of YF-S0 as a potent SARS-CoV-2 vaccine candidate.

NATURE (2021)

Article Multidisciplinary Sciences

Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody

C. Garrett Rappazzo et al.

Summary: The engineered antibody ADG-2 shows enhanced neutralization breadth and potency against a wide range of sarbecoviruses, providing complete protection in SARS and COVID-19 mouse models. Structural and biochemical studies reveal that ADG-2 targets a highly conserved epitope through a unique angle of approach.

SCIENCE (2021)

Article Multidisciplinary Sciences

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Tyler N. Starr et al.

Summary: Research has found that mutations in the receptor binding domain (RBD) of SARS-CoV-2 may potentially escape the action of the REGN-COV2 cocktail, providing important information for interpreting mutations observed during viral surveillance.

SCIENCE (2021)

Article Biology

Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e

Kathryn E. Kistler et al.

Summary: Seasonal coronaviruses, including OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein exposed to human immune response, potentially leading to reinfection. This adaptive change may require continual vaccine updates for effective protection against these viruses.
Article Biochemistry & Molecular Biology

Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

Emma C. Thomson et al.

Summary: SARS-CoV-2 virus can mutate and evade immunity, with mutations like N439K conferring resistance against neutralizing monoclonal antibodies and enhancing binding affinity to hACE2 receptor. Despite similar in vitro replication fitness and clinical outcomes compared to wild type, N439K mutation highlights the importance of ongoing molecular surveillance for guiding vaccine and therapeutic development and usage.
Article Biochemistry & Molecular Biology

Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection

Emma S. Winkler et al.

Summary: This study found that neutralizing human monoclonal antibodies in SARS-CoV-2-infected animals require Fc effector functions for optimal protection, reducing inflammation, improving respiratory mechanics, and being associated with diminished immune signaling and tissue repair.
Article Microbiology

Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization

Zhuoming Liu et al.

Summary: The study found that antibodies targeting the SARS-CoV-2 spike protein have escape mutations, different monoclonal antibodies have unique resistance profiles, some mutants are resistant to multiple antibodies while some variants can escape neutralization by convalescent sera. Comparing antibody-mediated mutations with circulating SARS-CoV-2 sequences revealed substitutions that may weaken neutralizing immune responses in some individuals, warranting further investigation.

CELL HOST & MICROBE (2021)

Article Microbiology

Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies

Allison J. Greaney et al.

Summary: The evolution of SARS-CoV-2 may impact the recognition of the virus by human antibody-mediated immunity, with mutations affecting antibody binding varying significantly among individuals and within the same individual over time. Despite this variability, mutations that greatly reduce antibody binding usually occur at specific sites in the RBD, with E484 being the most crucial. These findings can inform surveillance efforts for SARS-CoV-2 evolution in the future.

CELL HOST & MICROBE (2021)

Letter Medicine, General & Internal

Emergence of a Novel SARS-CoV-2 Variant in Southern California

Wenjuan Zhang et al.

Summary: The research focused on sequencing and phylogenetic analyses of SARS-CoV-2 isolates from symptomatic patients at Cedar-Sinai Medical Center in November-December 2020, providing insights into a surge in cases and hospitalizations during that period.

JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION (2021)

Article Multidisciplinary Sciences

Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies

Dami A. Collier et al.

Summary: The B.1.1.7 variant of SARS-CoV-2 exhibited reduced neutralization by vaccines and antibodies from recovered COVID-19 patients, with a more substantial loss seen when introducing the E484K mutation. This mutation poses a threat to the efficacy of the BNT162b2 vaccine.

NATURE (2021)

Article Multidisciplinary Sciences

Detection of a SARS-CoV-2 variant of concern in South Africa

Houriiyah Tegally et al.

Summary: The article describes a newly emerged lineage of SARS-CoV-2, 501Y.V2, characterized by eight mutations in the spike protein, which may result in increased transmissibility or immune escape. This lineage originated in South Africa and quickly became dominant in Eastern Cape, Western Cape, and KwaZuluNatal provinces within weeks.

NATURE (2021)

Article Multidisciplinary Sciences

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Pengfei Wang et al.

Summary: The COVID-19 pandemic has had global repercussions, with promising vaccines and monoclonal antibody therapies. However, newly detected variants of SARS-CoV-2 present challenges to these treatment options.

NATURE (2021)

Article Biochemistry & Molecular Biology

Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies

Rita E. Chen et al.

Summary: The study analyzed antibody neutralization activity against a panel of authentic isolates and chimeric SARS-CoV-2 variants, showing significantly reduced neutralizing activity against the B.1.351 variant first identified in South Africa. Antibodies targeting the receptor-binding domain and N-terminal domain, monoclonal antibodies, convalescent sera, and mRNA vaccine-induced immune sera exhibited decreased inhibitory activity against viruses with an E484K spike mutation, suggesting a need for updated monoclonal antibodies or vaccine adjustments to prevent loss of protection against emerging variants.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2

Matthew McCallum et al.

Summary: The study identifies 41 human monoclonal antibodies that recognize the N-terminal domain of the SARS-CoV-2 spike protein and exhibit strong neutralizing activity. These antibodies inhibit cell-to-cell fusion, activate effector functions, and protect animals from virus challenge, highlighting the importance of NTD-specific neutralizing antibodies for protective immunity and vaccine development. Several SARS-CoV-2 variants with mutations in the NTD supersite suggest ongoing selective pressure on the virus.
Article Multidisciplinary Sciences

Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses

Kevin O. Saunders et al.

Summary: This study demonstrates that immunizing macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, adjuvanted with 3M-052 and alum, can elicit cross-neutralizing antibody responses against various coronaviruses and provide protection against SARS-CoV-2. Nucleoside-modified mRNAs encoding stabilized spike proteins also induce antibody responses against different coronaviruses, suggesting potential for developing vaccines against multiple betacoronaviruses in the future.

NATURE (2021)

Article Biochemistry & Molecular Biology

Structural basis for broad coronavirus neutralization

Maximilian M. Sauer et al.

Summary: The study identified a monoclonal antibody, B6, that can cross-react with eight beta-coronavirus spike proteins from three viral lineages, targeting a conserved cryptic epitope for potential broad coronavirus neutralization, marking a potential breakthrough in pan-beta-coronavirus vaccine design.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2021)

Article Multidisciplinary Sciences

Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

Nuno R. Faria et al.

Summary: A new variant of concern, P.1, with 17 mutations including three spike protein mutations associated with increased binding to human ACE2 receptors, emerged in Manaus, Brazil between November 2020 and January 2021. Molecular analysis suggests P.1 may be 1.7- to 2.4-fold more transmissible and that previous infection may provide 54 to 79% protection against P.1 infection compared to other lineages. Enhanced global genomic surveillance of such variants is crucial for pandemic response.

SCIENCE (2021)

Article Microbiology

A human coronavirus evolves antigenically to escape antibody immunity

Rachel T. Eguia et al.

Summary: This study investigates the evolution of human coronavirus 229E and finds that as the virus evolves, mutations in the spike protein can escape neutralization by antibodies in old human sera. The results suggest that viral evolution may impact immunity, highlighting the need for periodic updates to coronavirus vaccines.

PLOS PATHOGENS (2021)

Review Biochemistry & Molecular Biology

Tackling COVID-19 with neutralizing monoclonal antibodies

Davide Corti et al.

Summary: Monoclonal antibodies have revolutionized the treatment of several human diseases, including cancer, autoimmunity, and infectious diseases. Lessons learned from the COVID-19 pandemic have paved the way for the development of more monoclonal antibody-based therapeutics.
Article Multidisciplinary Sciences

Broad sarbecovirus neutralization by a human monoclonal antibody

M. Alejandra Tortorici et al.

Summary: The emergence of SARS-CoV-2 variants and recurrent spillovers of coronaviruses into the human population emphasize the need for broadly neutralizing antibodies to prevent future zoonotic infections. The human monoclonal antibody S2X259 has shown promising results in neutralizing various forms of SARS-CoV-2 and potentially zoonotic sarbecoviruses by inhibiting the binding of ACE2 to the receptor-binding domain. This antibody targets a key antigenic site and may guide the design of vaccines effective against all sarbecoviruses.

NATURE (2021)

Article Chemistry, Multidisciplinary

SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome

Maxwell Zimmerman et al.

Summary: Researchers utilized the Folding@home project to simulate the viral proteome of SARS-CoV-2 and discovered 'cryptic' epitopes, with spike variants affecting the balance between receptor binding and immune evasion. The data and models generated provide valuable insight for the design of antiviral drugs.

NATURE CHEMISTRY (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern

Matthew McCallum et al.

Summary: The novel CAL.20C (B.1.427/B.1.429) variant carries spike protein mutations, resulting in reduced neutralizing titers in vaccinated individuals and convalescent individuals. The L452R mutation reduces neutralizing activity in RBD-specific monoclonal antibodies, while the S13I and W152C mutations lead to the total loss of neutralization in NTD-specific antibodies due to antigenic supersite remodeling.

SCIENCE (2021)

Article Biochemistry & Molecular Biology

Comprehensive characterization of N- and O-glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2

Asif Shajahan et al.

Summary: The emergence of the COVID-19 pandemic caused by SARS-CoV-2 has led to the development of new therapeutic strategies, with a focus on understanding the viral attachment, entry, and replication mechanisms. Analysis of glycomic and glycoproteomic profiles of human angiotensin converting enzyme 2 (hACE2) provides insight into viral binding and entry, aiding in the development of novel therapeutics. Studying the site-specific glycosylation of hACE2 and its role in virus-receptor interactions is crucial for understanding the complications of COVID-19 patients with different demographics and pre-existing conditions.

GLYCOBIOLOGY (2021)

Article Cell Biology

Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016

Tyler N. Starr et al.

Summary: The study mapped mutations to the SARS-CoV-2 spike receptor-binding domain that escape binding by certain monoclonal antibodies. These mutations are concentrated in specific lineages of SARS-CoV-2. The authors suggest diversifying the epitopes targeted by antibodies and antibody cocktails to make them more resilient to SARS-CoV-2 antigenic evolution.

CELL REPORTS MEDICINE (2021)

Article Multidisciplinary Sciences

Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice

Alexander A. Cohen et al.

Summary: The study developed nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 and other animal coronaviruses, which induced cross-reactive antibody responses in mice. Immunization with mosaic RBD nanoparticles resulted in superior neutralization of heterologous viruses, providing a potential strategy for simultaneous protection against multiple coronaviruses.

SCIENCE (2021)

Article Biochemistry & Molecular Biology

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

Alexandra C. Walls et al.

Article Multidisciplinary Sciences

Site-specific glycan analysis of the SARS-CoV-2 spike

Yasunori Watanabe et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2

Rui Shi et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cross-neutralization ofSARS-CoV-2 by a human monoclonal SARS-CoV antibody

Dora Pinto et al.

NATURE (2020)

Article Multidisciplinary Sciences

Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins

Tommy Tsan-Yuk Lam et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies

Ahmed O. Hassan et al.

Article Biochemistry & Molecular Biology

Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER

Kailash Ramlaul et al.

JOURNAL OF STRUCTURAL BIOLOGY (2020)

Article Multidisciplinary Sciences

Potently neutralizing and protective human antibodies against SARS-CoV-2

Seth J. Zost et al.

NATURE (2020)

Article Multidisciplinary Sciences

Structure-based design of prefusion-stabilized SARS-CoV-2 spikes

Ching-Lin Hsieh et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail

Johanna Hansen et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

Christopher O. Barnes et al.

NATURE (2020)

Article Multidisciplinary Sciences

Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms

M. Alejandra Tortorici et al.

SCIENCE (2020)

Article Biochemical Research Methods

Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction

Ali Punjani et al.

NATURE METHODS (2020)

Article Multidisciplinary Sciences

STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters

Robbert Boudewijns et al.

NATURE COMMUNICATIONS (2020)

Article Biochemistry & Molecular Biology

Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion

Alexandra C. Walls et al.

Article Biochemical Research Methods

Real-time cryo-electron microscopy data preprocessing with Warp

Dimitry Tegunov et al.

NATURE METHODS (2019)

Article Chemistry, Multidisciplinary

A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis

Jasenko Zivanov et al.

Article Biochemistry & Molecular Biology

Sequence-to-structure dependence of isolated IgG Fc complex biantennary N-glycans: a molecular dynamics study

Aoife M. Harbison et al.

GLYCOBIOLOGY (2019)

Article Biochemical Research Methods

ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps

Tristan Ian Croll

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2018)

Article Multidisciplinary Sciences

Inferring the shape of global epistasis

Jakub Otwinowski et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Article Biochemical Research Methods

cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination

Ali Punjani et al.

NATURE METHODS (2017)

Article Multidisciplinary Sciences

Data, disease and diplomacy: GISAID's innovative contribution to global health

Stefan Elbe et al.

GLOBAL CHALLENGES (2017)

Article Biophysics

MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

Robert T. McGibbon et al.

BIOPHYSICAL JOURNAL (2015)

Article Chemistry, Physical

Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model

Pengfei Li et al.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2015)

Article Chemistry, Physical

ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB

James A. Maier et al.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2015)

Article Biochemistry & Molecular Biology

A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence

Vineet D. Menachery et al.

NATURE MEDICINE (2015)

Article Biochemical Research Methods

RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

Alexandros Stamatakis

BIOINFORMATICS (2014)

Article Chemistry, Physical

Robust and efficient configurational molecular sampling via Langevin dynamics

Benedict Leimkuhler et al.

JOURNAL OF CHEMICAL PHYSICS (2013)

Article Biochemistry & Molecular Biology

MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

Kazutaka Katoh et al.

MOLECULAR BIOLOGY AND EVOLUTION (2013)

Article Biochemical Research Methods

REFMAC5 for the refinement of macromolecular crystal structures

Garib N. Murshudov et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2011)

Article Chemistry, Multidisciplinary

Software News and Updates MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations

Naveen Michaud-Agrawal et al.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2011)

Article Biochemical Research Methods

XDS

Wolfgang Kabsch

ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY (2010)

Article Biochemical Research Methods

Features and development of Coot

P. Emsley et al.

ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY (2010)

Article Immunology

Detection of Novel SARS-like and Other Coronaviruses in Bats from Kenya

Suxiang Tong et al.

EMERGING INFECTIOUS DISEASES (2009)

Review Chemistry, Multidisciplinary

GLYCAM06: A generalizable Biomolecular force field. Carbohydrates

Karl N. Kirschner et al.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2008)

Article Chemistry, Multidisciplinary

Phaser crystallographic software

Airlie J. McCoy et al.

JOURNAL OF APPLIED CRYSTALLOGRAPHY (2007)

Article Biochemistry & Molecular Biology

PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments

Mikita Suyama et al.

NUCLEIC ACIDS RESEARCH (2006)

Article Biochemistry & Molecular Biology

Automated molecular microscopy: The new Leginon system

C Suloway et al.

JOURNAL OF STRUCTURAL BIOLOGY (2005)

Article Multidisciplinary Sciences

Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human

HD Song et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2005)