4.5 Article

Hybrid variation for root system efficiency in maize: potential links to drought adaptation

期刊

FUNCTIONAL PLANT BIOLOGY
卷 43, 期 6, 页码 502-511

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP15308

关键词

partitioning; root distribution; transpiration; transpiration efficiency; water uptake; Zea mays L

资金

  1. Australian Research Council [LP100100495]

向作者/读者索取更多资源

Water availability can limit maize (Zea mays L.) yields, and root traits may enhance drought adaptation if they can moderate temporal patterns of soil water extraction to favour grain filling. Root system efficiency (RSE), defined as transpiration per unit leaf area per unit of root mass, represents the functional mass allocation to roots to support water capture relative to the allocation to aerial mass that determines water demand. The aims of this study were to identify the presence of hybrid variation for RSE in maize, determine plant attributes that drive these differences and illustrate possible links of RSE to drought adaptation via associations with water extraction patterns. Individual plants for a range of maize hybrids were grown in large containers in shadehouses in Queensland, Australia. Leaf area, shoot and root mass, transpiration, root distribution and soil water were measured in all or selected experiments. Significant hybrid differences in RSE existed. High RSE was associated with reduced dry mass allocation to roots and more efficient water capture per unit of root mass. It was also weakly negatively associated with total plant dry mass, reducing preanthesis water use. This could increase grain yield under drought. RSE provides a conceptual physiological framework to identify traits for high-throughput phenotyping in breeding programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据