4.8 Article

Highly accurate protein structure prediction for the human proteome

期刊

NATURE
卷 596, 期 7873, 页码 590-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-03828-1

关键词

-

向作者/读者索取更多资源

Using the AlphaFold method, the structural coverage of the proteome has been significantly expanded, covering 98.5% of human proteins with 58% of residues having confident predictions and 36% having very high confidence. Introducing new metrics to interpret the dataset and identify disordered regions, this study aims to provide high-quality predictions for generating biological hypotheses.
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure(1). Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold(2), at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据