4.8 Article

BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Spike mutation D614G alters SARS-CoV-2 fitness

Jessica A. Plante et al.

Summary: The D614G substitution in the SARS-CoV-2 spike protein enhances viral replication and infectivity in human lung epithelial cells, primary airway tissues, and hamsters. This variant may increase transmission in the upper respiratory tract and doesn't seem to significantly reduce vaccine efficacy. Further research on therapeutic antibodies targeting the circulating G614 virus is recommended.

NATURE (2021)

Article Multidisciplinary Sciences

Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape

Zhiqiang Ku et al.

Summary: Antibody cocktails are a promising approach to prevent SARS-CoV-2 escape, with a combination of antibodies CoV2-06 and CoV2-14 identified as effective in preventing viral escape and providing protection in mice, offering new insights for treating COVID-19.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 spike D614G change enhances replication and transmission

Bin Zhou et al.

Summary: Research has shown that the D614G substitution in the spike protein of SARS-CoV-2 leads to increased binding and replication potential in humans, as well as significantly higher replication and transmissibility in different animal models, providing an explanation for the global prevalence of this variant in the COVID-19 pandemic.

NATURE (2021)

Article Multidisciplinary Sciences

BNT162b vaccines protect rhesus macaques from SARS-CoV-2

Annette B. Vogel et al.

Summary: The two vaccine candidates, BNT162b1 and BNT162b2, developed contain modified messenger RNA encoding immunogens derived from the spike glycoprotein of SARS-CoV-2. They have shown promising immune responses in mice and rhesus macaques, with ongoing phase I trials in Germany and the USA and a global phase II/III trial for BNT162b2.

NATURE (2021)

Article Biochemistry & Molecular Biology

Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies

Rita E. Chen et al.

Summary: The study analyzed antibody neutralization activity against a panel of authentic isolates and chimeric SARS-CoV-2 variants, showing significantly reduced neutralizing activity against the B.1.351 variant first identified in South Africa. Antibodies targeting the receptor-binding domain and N-terminal domain, monoclonal antibodies, convalescent sera, and mRNA vaccine-induced immune sera exhibited decreased inhibitory activity against viruses with an E484K spike mutation, suggesting a need for updated monoclonal antibodies or vaccine adjustments to prevent loss of protection against emerging variants.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera

Xuping Xie et al.

Summary: The study found that human sera from recipients of the BNT162b2 vaccine can neutralize SARS-CoV-2 viruses containing key spike mutations from the newly emerged UK and SA variants.

NATURE MEDICINE (2021)

Article Biochemical Research Methods

Engineering SARS-CoV-2 using a reverse genetic system

Xuping Xie et al.

Summary: Reverse genetic system for SARS-CoV-2 is essential for studying viruses, developing vaccines, and screening antiviral drugs. However, manipulating the system is complex due to the large size of the coronavirus genome and toxic genomic elements, requiring a meticulous six-step process. Mastering this system will accelerate COVID-19 research across different scientific fields.

NATURE PROTOCOLS (2021)

Letter Medicine, General & Internal

Neutralizing Activity of BNT162b2-Elicited Serum

Yang Liu et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Letter Medicine, General & Internal

Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants

Laith J. Abu-Raddad et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Letter Medicine, General & Internal

BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants

Yang Liu et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Immunology

The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization

Jing Zou et al.

Summary: The D614G mutation modestly reduced SARS-CoV-2 neutralization by sera elicited from BNT162b2 vaccine in mice, rhesus monkeys, and humans, but the vaccine efficacy was consistent with the 95% observed in clinical trials.

NPJ VACCINES (2021)

Article Multidisciplinary Sciences

BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans

Ugur Sahin et al.

Summary: The BNT162b2 vaccine shows 95% efficacy in preventing COVID-19 by boosting neutralizing antibody titres and activating specific T cell responses. The vaccine-induced immune response is broad and stable, lasting for a prolonged period, providing good coverage against various SARS-CoV-2 variants.

NATURE (2021)

Article Multidisciplinary Sciences

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Peng Zhou et al.

NATURE (2020)

Article Microbiology

An Infectious cDNA Clone of SARS-CoV-2

Xuping Xie et al.

CELL HOST & MICROBE (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.

Article Multidisciplinary Sciences

A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation

Antonio E. Muruato et al.

NATURE COMMUNICATIONS (2020)

Article Medicine, General & Internal

Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

Edward E. Walsh et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo

Yixuan J. Hou et al.

SCIENCE (2020)