4.8 Article

The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity

期刊

NATURE
卷 598, 期 7881, 页码 495-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-03829-0

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Nu 70/15-1]
  2. ERA-CAPS-Grant SICOPID [Nu 70/16-1, CRC-1101, CRC-1403-414786233]
  3. Reinhard Frank Stiftung
  4. Max Planck Society

向作者/读者索取更多资源

Plants use cell-surface and intracellular LRR immune receptors to detect pathogens. Both PTI and ETI immune responses rely on the transcriptional activation of similar sets of genes, suggesting a convergence point for defense signaling cascades upstream of nuclear events.
Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens(1). LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes(2), suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据