4.8 Review

Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe?

期刊

NANO TODAY
卷 39, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2021.101173

关键词

Cancer; Molecular imaging; Nanoprobes; Folate receptor; Folic acid

资金

  1. Zahedan University of Medical Sciences [7970]

向作者/读者索取更多资源

Molecular imaging of cancer is a promising field for visualizing, characterizing, and quantifying cancer biology in vivo. Targeted nanoprobes designed for folate receptors show potential for early cancer detection, but face challenges such as non-specific uptake in the liver and spleen.
Molecular imaging (MI) of cancer is an emerging field in diagnostic imaging that provides means for visualization, characterization, and quantification of cancer biology in vivo. Various targeted nanoprobes (NPs) have been introduced to enhance signal and/or contrast, binding avidity, and targeting specificity for early detection of cancer. The overexpressed pattern of folate receptors (FRs) on the surface of cancer cells is overall distinct from normal cells. Therefore, folic acid (FA) or folate-conjugated NPs have gained much interest as diagnostic agents, therapeutics, and their combined use as theranostics for targeting FR-over expressing tumor cells. A major advantage of FR-specific MI approaches is the high affinity of the ligand and its receptor. NPs can be designed for various clinical imaging modalities, including magnetic resonance imaging, computed tomography, optical and nuclear imaging, and ultrasonography. However, aside from the presence of high FR numbers in the normal kidney, a major challenge is the high non-specific uptake of both FA-targeted and non-targeted NPs in the liver and spleen, as evidenced by the lack of clinical trials using FA-NPs. This article summarizes the recent advancements that have been made with FR-specific MI methods and discusses the challenges for future clinical translation of FA-conjugated NPs. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据