4.8 Article

Ultimate dielectric scaling of 2D transistors via van der Waals metal integration

期刊

NANO RESEARCH
卷 15, 期 2, 页码 1603-1608

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-021-3708-1

关键词

van der Waals (vdW) integration; dielectric scaling; transfer gate; MoS2; metal oxide semiconductor field effect transistor (MOSFET)

资金

  1. National Key R&D Program of China [2018YFA0703700]
  2. National Natural Science Foundation of China [51991343]

向作者/读者索取更多资源

This study introduces a van der Waals (vdW) integration route for highly reliable gate metal integration on porous dielectrics. The physical lamination process employed by the vdW integration avoids the direct deposition of metal electrodes into porous dielectrics to ensure reliable gate integration and produce low gate leakage devices.
The two-dimensional transition metal dichalcogenides (TMDs) have attracted intense interest as an atomically thin semiconductor channel for the continued transistor scaling. However, with a dangling bond free surface, it has been a key challenge to reliably integrate high-quality gate dielectrics on TMDs. In particular, the atomic layer deposition of dielectrics on TMDs typically features highly non-uniform nucleation and produces a highly rough or porous dielectric film with rich pinholes that are prone to further damage during the gate integration process. Herein we report a van der Waals (vdW) integration route towards highly reliable gate metal integration on porous dielectrics. The physical lamination process employed by the vdW integration avoids the direct deposition of metal electrodes into porous dielectrics to ensure reliable gate integration and produce low gate leakage devices. The electrical measurements demonstrate the vdW integrated MoS2 top gate devices exhibit substantially reduced gate leakage current that is about 3-5 orders of magnitude smaller than that with deposited metal electrodes. Furthermore, we show the vdW integration process can be used to create high performance top-gated MoS2 transistors with ultrathin Al2O3 dielectrics down to 1 nm, representing the ultimate dielectric scaling for TMDs transistors. This study demonstrates that vdW integration can enable highly reliable gate integration on relatively low quality dielectrics on TMDs, and opens an interesting pathway to high-performance top-gate transistors using dangling bond free two-dimensional (2D) semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据