4.8 Article

Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals

期刊

NANO LETTERS
卷 21, 期 15, 页码 6640-6647

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.1c02104

关键词

Liquid cell; in situ transmission electron microscopy; etching; surface adsorption; ligand; inhibitor molecules

资金

  1. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Science and Engineering Division [DE-AC02-05-CH11231]
  2. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. National Natural Science Foundation of China [51925903]
  4. National Key R&D Program of China [2018YFC0705401]

向作者/读者索取更多资源

Selective adsorption of ligands on nanocrystal surfaces affects oxidative etching. Different concentrations of iron acetylacetonate led to different etching pathways on palladium nanocrystals. Ab initio calculations showed that differences in adsorption energy of inhibitor molecules on palladium facets influenced the etching behavior.
Selective adsorption of ligands on nanocrystal surfaces can affect oxidative etching. Here, we report the etching of palladium nanocrystals imaged using liquid cell transmission electron microscopy. The adsorption of surface ligands (i.e., iron acetylacetonate and its derivatives) and their role as inhibitor molecules on the etching process were investigated. Our observations revealed that the etching was dominated by the interplay between palladium facets and ligands and that the etching exhibited different pathways at different concentrations of ligands. At a low concentration of iron acetylacetonate (0.1 mM), rapid etching primarily at {100} facets led to a concave structure. At a high concentration (1.0 mM), the etch rate was decreased owing to a protective film of iron acetylacetonate on the {100} facets and a round nanoparticle was achieved. Ab initio calculations showed that the differences in adsorption energy of inhibitor molecules on palladium facets were responsible for the etching behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据