4.8 Article

Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode

期刊

NANO LETTERS
卷 21, 期 18, 页码 7715-7723

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.1c02521

关键词

reversible lithiophilic sites; self-healing; dendrite-free; high Coulombic efficiency; lithium metal anode

资金

  1. National Natural Science Foundation of China [51872012]
  2. Key Technologies Research and Development Program of China [2018YFA0306900]

向作者/读者索取更多资源

Utilizing liquid gallium-indium (GaIn) nanoparticles with structural self-healing properties to guide uniform metallic lithium nucleation and deposition effectively addresses the issue of Li dendrite growth during charge/discharge processes. The self-healing design of nucleation seeds provides important insights for achieving high-performance lithium metal anodes.
Seeded lithium (Li) nucleation has been considered as a promising strategy to achieve uniform Li deposition. However, problems of agglomeration and pulverization quickly invalidate the nucleation seeds, resulting in Li dendrite growth during repeated charge/discharge processes. Herein, liquid gallium-indium (GaIn) nanoparticles with structural self-healing properties are utilized to guide uniform metallic Li nucleation and deposition. Ultrafine GaIn nanoparticles (similar to 25 nm) uniformly decorated on the surface of carbon layers effectively homogenize the lithium-ion flux. After fully Li stripping, lithiophilic GaIn nanoparticles return to the liquid binary eutectic phase, thereby healing the deformed structure and enabling them to continuously guide dendrite-free Li deposition. Li metal anodes with such nucleation seeds exhibit nearly zero nucleation overpotential even after hundreds of cycles and a high average Coulombic efficiency of 99.03% for more than 400 cycles. The design of self-healing nucleation seeds provides important insights for obtaining high-performance lithium metal anodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据