4.8 Article

Ferroptosis-Strengthened Metabolic and Inflammatory Regulation of Tumor-Associated Macrophages Provokes Potent Tumoricidal Activities

期刊

NANO LETTERS
卷 21, 期 15, 页码 6471-6479

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.1c01401

关键词

Nanoimmunomodulation; Metal organic framework; Macrophage polarization; Metabolic regulation; Tumor inhibition

资金

  1. National Natural Science Foundation of China [NSFC 22075085]
  2. Shanghai Science and Technology Foundation [19JC1412100]

向作者/读者索取更多资源

This study demonstrates that an iron-based metal organic framework nanoparticle and a ferroptosis-inducing agent synergistically induce mitochondrial alternation in TAMs, resulting in a radical metabolic switch from mitochondrial oxidative phosphorylation to glycolysis, which is resistant to anti-inflammatory stimuli challenge. The ferroptosis stress strengthened by the nanoformulation also drives multiple pro-inflammatory signaling pathways, enabling macrophage activation with potent tumoricidal activities. The ferroptosis-strengthened macrophage regulation strategy present in this study paves the way for TAM-centered antitumoral treatment to overcome the limitations of conventional methods.
Modulation of tumor-associated macrophages (TAMs) holds promise for cancer treatment, mainly relying on M1 signaling activation and pro-inflammatory promotion. Nevertheless, the antitumor activity is often limited by the anti-inflammatory factors in the tumor microenvironment. Moreover, the metabolic function of TAMs is also critical to tumor progression. However, there are a few strategies that can simultaneously regulate both inflammatory and metabolic functions to achieve safe and potent antitumor activation of TAMs. Herein, we demonstrate that an iron-based metal organic framework nanoparticle and a ferroptosis-inducing agent synergistically induce mitochondrial alternation in TAMs, resulting in a radical metabolic switch from mitochondrial oxidative phosphorylation to glycolysis, which is resistant to anti-inflammatory stimuli challenge. The ferroptosis stress strengthened by the nanoformulation also drives multiple pro-inflammatory signaling pathways, enabling macrophage activation with potent tumoricidal activities. The ferroptosis-strengthened macrophage regulation strategy present in this study paves the way for TAM-centered antitumoral treatment to overcome the limitations of conventional methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据